K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2015

 

5x2+2xy+y2-4x-40=0

<=>4x2-4x+1+x2+2xy+y2-41=0

<=>(2x-1)2+(x+y)2=41=16+25=25+16

TH1:

(2x-1)2=16 và (x+y)2=25

<=>2x-1=4 hoặc 2x-1=-4 và x+y=5 hoặc x+y=-5

<=>x=5/2(L) hoặc x=-3/2 (L) 

Vậy TH này ko thỏa mãn

TH2:

(2x-1)2=25 và (x+y)2=16

<=>2x-1=5 hoặc 2x-1=-5 và x+y=4 hoặc x+y=-4

<=>x=3(nhận) hoặc x=-2 (nhận) và y=1(nhận) hoặc y=6(nhận) hoặc y=-7 (nhận) hoặc y=-2(nhận)

Vậy x={3;-2} ; y={1;6;-7;-2}

 

10 tháng 8 2023

Ta đặt y = x + k với k \(\inℤ\)

Khi đó 3x2 - y2 - 2xy - 2x - 2y + 40 = 0

<=> 3x2 - (x + k)2  - 2x(x + k) - 2x - 2(x + k) + 40 = 0

<=> k2 + 4xk + 4x + 2k - 40 = 0

<=> (k + 1)2 + 4x(k + 1) = 41

<=> (k + 1)(4x + k + 1) = 41

Ta lập bảng ta được : 

k + 1 1 41 -1 -41
4x + k + 1 41 1 -41 -1
x 10 -10  -10 10
k 0 40 -2 -42

lại có y = x + k

ta được các cặp (x;y) cần tìm là (10;10) ; (-10 ; 30) ; (-10 ; -12) ; (10;-32) 

22 tháng 5 2017

pt ở đề bài <=> x^2-2x(y-2)-(3y-1)=0 (1) 

để pt có nghiệm x nguyên thì delta phải là số chính phương 

xét delta=[2(y-2)]^2+4=a^2 => a^2-(2y-4)^2=4=>(a-2y+4)(a+2y-4)=4 đến đây giải pt ước số rồi tìm y => tìm x 

-nghĩ vậy chả biết có đúng không <(")

5 tháng 12 2017

\(x^2+2xy-7y-12=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(y^2+7y+12\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2=\left(y+3\right)\left(y+4\right)\) (1)

Ta thấy VT là số CP với mọi x;y nguyên ; VP là tích 2 số nguyên liên tiếp nên ko phải là số CP

=> (1) vô lý   Hay PT trên ko có nghiệm x;y nguyên

1 tháng 4 2018

\(x^2+2xy-7y-12=0\)

=> \(x^2+y\left(2x-7\right)=12\)

=> \(y=\frac{12-x^2}{2x-7}=\frac{-\left(x^2-12\right)}{2x-7}\)

Vì y là số nguyên nên

\(x^2-12⋮2x-7\)

=> 2x - 7 \(\in\)Ư(1) 

=> x = -3 , 4

x=-3 cho y \(\notin\)Z

x= 4 cho y = -4 (t/m)

Vậy .........

18 tháng 2

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.

13 tháng 12

3x + 9xy - 6y
 

 

26 tháng 10 2023

\(5x^2+2xy+y^2-16x+16=0\)

=>\(x^2+2xy+y^2+4x^2-16x+16=0\)

=>\(\left(x+y\right)^2+\left(2x-4\right)^2=0\)

=>\(\left\{{}\begin{matrix}x+y=0\\2x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)