Chứng minh số sau không là số chính phương
A=4014025
B=1+2+3+4+5+.......+2005
C=1+3+3^2+3^3+......+3^10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh số sau không là số chính phương
A=4014025
B=1+2+3+4+5+.......+2005
C=1+3+3^2+3^3+......+3^10
a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9
Ta có :
02 = 0
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8
b) Vì 1262 có chữ số tận cùng là 6
=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )
Ta có 10012 có chữ số tận cùng là 1
=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )
Ta có 112 và 113 đều có chữ số tận cùng là 1
=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )
Ta có 1010 có chữ số tận cùng là 0
=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )
Ta có 5151 có chữ số tận cùng là 1
=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )
Lời giải:
$P=1-3^2+3^4-3^6+...+3^{96}-3^{98}$
$3^2P=3^2-3^4+3^6-3^8+...+3^{98}-3^{100}$
$\Rightarrow P+3^2P=1-3^{100}$
$\Rightarrow 10P=1-3^{100}$
$\Rightarrow 1-10P=3^{100}=(3^{50})^2$ là số chính phương.
Ta có đpcm.
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = 152 nên tổng trên là số chính phương.
P/s :Ta có công thức : 13 + 23 + 33 + ... + n3 = (1 + 2 + 3 + ... + n)2 = [n(n + 1) : 2]2 = [n(n + 1)]2 : 4
Moon Light: Lớp 6 chưa học căn