K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2015

A=1+3+3^2...+3^30  (1)

Nhan 2 ve voi 3 ta duoc : 

3A=3+3^2+3^3+...+3^31             (2)

Lay (2)-(1) ta duoc : 

2A=1+3^31

2A=1+...7

2A=...8

A=...8:2

A=...4

Vay A khong phai la so chinh phuong

**** nhe

8 tháng 10 2017

\(S=1+3+3^2+3^3+....+3^{30}\)

\(3S=\left(1+3+3^2+3^3+...+3^{30}\right).3\)

\(3S=3+3^2+3^3+...+3^{31}\)

\(3S-S=\left(3+3^2+3^3+...+3^{31}\right)\)\(-\left(1+3+3^2+3^3+...+3^{30}\right)\)

\(2S=3^{31}-1\)

\(S=\frac{3^{31}-1}{2}\)

=>S không phải là số chính phương

9 tháng 10 2016

mình tính ra tổng S có tận cùng là 1 và 6 có đúng k ? nếu đúng thì kết luận như thế nào?

7 tháng 10 2016

(3^101-1) /2

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
$A=1+3+3^2+(3^3+3^4+3^5+3^6)+.....+(3^{87}+3^{88}+3^{89}+3^{90}$

$=13+3^3(1+3+3^2+3^3)+....+3^{87}(1+3+3^2+3^3)$

$=13+(1+3+3^2+3^3)(3^3+....+3^{87})$

$=13+40(3^3+....+3^{87})=3+10+40(3^3+...+3^{87})$ chia $5$ dư $3$

$\Rightarrow A$ không là scp.

31 tháng 10 2019

\(a,\\ Có.3A=3\left(1+3+3^2+...+3^{30}\right)=3+3^2+3^3+...+3^{31}\\ Mà.A=1+3+3^2+3^3+...+3^{30}\\ \Rightarrow2A=3^{31}-1\\ 2A\equiv3^{31}-1\left(Mod.10\right)\\ \equiv3^{4\cdot7+3}-1\\ \equiv1+27-1\equiv7\)

Phần gì không hiểu thì hỏi nhé

31 tháng 10 2019

mod10 là j