Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi phần tận cùng của scp là $\overline{bc}$ với $b,c$ là số tự nhiên có 1 chữ số. $b$ lẻ nên $b=2k+1$ với $k$ tự nhiên.
Vì scp chia $4$ có dư $0$ hoặc $1$ nên $\overline{bc}$ chia $4$ dư $0$ hoặc $1$
$\Rightarrow 10b+c\equiv 0,1\pmod 4$
$\Rightarrow 10(2k+1)+c\equiv 0,1\pmod 4$
$\Rightarrow c+10\equiv 0,1\pmod 4$
$\Rightarrow c\equiv 2,3\pmod 4(1)$
Mà $c$ có 1 chữ số nên $c=2,3,6,7$ (1)
Lại có:
SCP chia 5 dư $0,1,4$
$\Rightarrow \overline{bc}\equiv 0,1,4\pmod 5$
$\Rightarrow 10b+c=10(2k+1)+c=c+10\equiv 0,1,4\pmod 5$
$\Rightarrow c\equiv 0,1,4\pmod 5$
$\Rightarrow c=0,1,4,6$ (2)
Từ $(1); (2)\Rightarrow c=6$
Gọi số đó là A6
ta có số có tận cung f là 6( số chẵn )
=> số đó chia hết cho 2
mà số đó là số chính phương => số đó chia hết cho 4
=> hai chữ số tận cùng chia hết cho 4
=> hai chữ số tận cùng thuộc tập hợp 16 ;36;56;76;96
=> ĐPCM
k mình nha
giả sử 1 scp có tận cùng là 6 mà chữ số hàng chục là chữ số chẵn
thì 2 chữ số tận cùng của nó là 06;26;46;66;86 => không chia hết cho 4(1)
Mà 1 số cp tận cùng là 6 thì chia hết cho 2 => chia hết cho 4 (2)
từ (1) và (2) => 1 số cp có tận cùng là 6 mà chữ số hàng chục là chẵn thì chia hết và không chia hết cho 4 _ vô lí
=> điều giả sử là sai
Vậy 1 số chính phương tận cùng là 6 thì chữ số hàng chục là chữ số lẻ
giả sử 1 số chính phương tận cùng là 6 mà có chữ số hàng chục là chẵn thì số chính phương đó tận cùng bằng 06, 26, 46, 66, 86. các số chính phương này không chia hết cho 4 (1). số chính phương có tận cùng bằng 6 thì chia hết cho 2. số chính phương phải chứa thừa số nguyên tố với số mũ chẵn do đó mọi số chính phương tận cùng bằng 6 phải chia hết cho 4 (2)
từ (1) và (2) => vô lý.
vậy số chính phương có tận cùng bằng 6 thì có chữ số hàng chục lẻ.