K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f(1)= -8

f(-1)= 38

học tốt !!!~~~~~

22 tháng 3 2017

 f(1) = 4.14 - 31.13 + 4.12 + 15 = 4 - 31 + 4 + 15 = -8

f(-1) = 4.(-1)4 - 31.(-1)3 + 4.(-1)2 + 15 = 4 + 31 + 4 + 15 = 54

19 tháng 12 2018

Ta có:

f(x) = -15x3 + 5x4 - 4x2 + 8x2 - 9x3 - x4 + 15 - 7x3

      = (5x4 - x4) - (15x3 + 9x3 + 7x3) + (-4x2 + 8x2) + 15

      = 4x4 - 31x3 + 4x2 + 15

P(x)=-31x^3+4x^4+4x^2+15=4x^4-31x^3+4x^2+15

P(1)=4-31+4+15=23-31=-8

P(0)=15

P(-1)=4+31+4+15=56

12 tháng 1 2023

lm đuy:)vừa nhạc hay thế còn j lại chê

`a,`

`P(x)=M(x)+N(x)`

`P(x)=`\(\left(5x^4+8x^2-9x^3-12x-6\right)+\left(-5x^2+9x^3-5x^4+12x-8\right)\)

`P(x)= 5x^4+8x^2-9x^3-12x-6-5x^2+9x^3-5x^4+12x-8`

`P(x)=(5x^4-5x^4)+(-9x^3+9x^3)+(8x^2-5x^2)+(-12x+12x)+(-6-8)`

`P(x)=3x^2-14`

`b,`

`M(x)=N(x)+Q(x)`

`-> Q(x)=M(x)-N(x)`

`-> Q(x)=(5x^4+8x^2-9x^3-12x-6)-(-5x^2+9x^3-5x^4+12x-8)`

`Q(x)=5x^4+8x^2-9x^3-12x-6+5x^2-9x^3+5x^4-12x+8`

`Q(x)=(5x^4+5x^4)+(-9x^3-9x^3)+(8x^2+5x^2)+(-12x-12x)+(-6+8)`

`Q(x)=10x^4-18x^3+13x^2-24x+2`

3 tháng 7 2018

* Ta có:

f(x) = x5 – 3x2 + 7x4 – 9x3 + x2 - 1/4 x

= x5 – (3x2 – x2) + 7x4 – 9x3 -1/4.x

= x5 – 2x2 + 7x4 – 9x3 -1/4.x

= x5 + 7x4 – 9x3 – 2x2 - 1/4

g(x) = 5x4 – x5 + x2 – 2x3 + 3x2 - 1/4

= 5x4 –x5+ (x2 + 3x2) – 2x3 – 1/4

= 5x4 – x5 + 4x2 – 2x3 – 1/4

= -x5 + 5x4 – 2x3 + 4x2 - 1/4

* f(x) + g(x)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

* f(x) - g(x)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

b)

Sửa đề: f(x)=A(x)+B(x)

Ta có: f(x)=A(x)+B(x)

\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

\(=12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

a) Ta có: \(A\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)

\(=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\dfrac{1}{4}x\)

\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

Ta có: \(B\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)

\(=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\dfrac{1}{4}\)

\(=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

21 tháng 10 2017

Ta có

Phần dư của phép chia f(x) cho g(x) là R = (a – 1)x + b + 30

Để phép chia trên là phép chia hết thì R = 0 với mọi x

ó (a – 1)x + b + 30 = 0 với mọi x

ó a - 1 = 0 b + 30 = 0  ó   a = 1 b = - 30

Vậy a = 1; b = -30

Đáp án cần chọn là: D

\(a) f ( x ) = 2 x ^4 + 3 x ^2 − x + 1 − x ^2 − x ^4 − 6 x ^3\)

\(= ( 2 x ^4 − x ^4 ) − 6 x ^3 + ( 3 x ^2 − x ^2 ) − x + 1\)

\(= x ^4 − 6 x ^3 + 2 x ^2 − x + 1\)

\(g ( x ) = 10 x ^3 + 3 − x ^4 − 4 x ^3 + 4 x − 2 x ^2\)

\(= − x ^4 + ( 10 x ^3 − 4 x ^3 ) − 2 x ^2 + 4 x + 3\)

\(= − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)

\(b) f ( x ) + g ( x ) = x ^4 − 6 x ^3 + 2 x ^2 − x + 1 − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)

\(= ( x ^4 − x ^4 ) + ( − 6 x ^3 + 6 x ^3 ) + ( 2 x ^2 − 2 x ^2 ) + ( − x + 4 x ) + ( 1 + 3 )\)

\(= 3 x + 4\)

c)Có \(h ( x ) = f ( x ) + g ( x ) = 3 x + 4\)

\(Cho h ( x ) = 0 ⇒ 3 x + 4 = 0\)

\(⇒ 3 x = − 4\) 

\(⇒ x = − \frac{4 }{3} \)

Vậy  \(x=-\frac{4}{3}\) là nghiệm của \(h ( x ) \)

 

`@` `\text {Ans}`

`\downarrow`

`a)`

Thu gọn:

`P(x)=`\(5x^4 + 3x^2 - 3x^5 + 2x - x^2 - 4 +2x^5\)

`= (-3x^5 + 2x^5) + 5x^4 + (3x^2 - x^2) + 2x - 4`

`= -x^5 + 5x^4 + 2x^2 + 2x - 4`

`Q(x) =`\(x^5 - 4x^4 + 7x - 2 + x^2 - x^3 + 3x^4 - 2x^2\)

`= x^5 + (-4x^4 + 3x^4) - x^3 + (x^2 - 2x^2) + 7x - 2`

`= x^5 - x^4 - x^3 - x^2 + 7x - 2`

`@` Tổng:

`P(x)+Q(x)=`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) + (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 + x^5 - x^4 - x^3 - x^2 + 7x - 2`

`= (-x^5 + x^5) - x^3 + (5x^4 - x^4) + (2x^2 - x^2) + (2x + 7x) + (-4-2)`

`= 4x^4 - x^3 + x^2 + 9x - 6`

`@` Hiệu:

`P(x) - Q(x) =`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) - (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 - x^5 + x^4 + x^3 + x^2 - 7x + 2`

`= (-x^5 - x^5) + (5x^4 + x^4) + x^3 + (2x^2 + x^2) + (2x - 7x) + (-4+2)`

`= -2x^5 + 6x^4 + x^3 + 3x^2 - 5x - 2`

`b)`

`@` Thu gọn:

\(H (x) = ( 3x^5 - 2x^3 + 8x + 9) - ( 3x^5 - x^4 + 1 - x^2 + 7x)\)

`= 3x^5 - 2x^3 + 8x + 9 - 3x^5 + x^4 - 1 + x^2 - 7x`

`= (3x^5 - 3x^5) + x^4 - 2x^3 - x^2 + (8x + 7x) + (9+1)`

`= x^4 - 2x^3 - x^2 + 15x + 10`

\(R( x) = x^4 + 7x^3 - 4 - 4x ( x^2 + 1) + 6x\)

`= x^4 + 7x^3 - 4 - 4x^3 - 4x + 6x`

`= x^4 + (7x^3 - 4x^3) + (-4x + 6x) - 4`

`= x^4 + 3x^3 + 2x - 4`

`@` Tổng:

`H(x)+R(x)=` \((x^4 - 2x^3 - x^2 + 15x + 10)+(x^4 + 3x^3 + 2x - 4)\)

`= x^4 - 2x^3 - x^2 + 15x + 10+x^4 + 3x^3 + 2x - 4`

`= (x^4 + x^4) + (-2x^3 + 3x^3) - x^2 + (15x + 2x) + (10-4)`

`= 2x^4 + x^3 - x^2 + 17x + 6`

`@` Hiệu: 

`H(x) - R(x) =`\((x^4 - 2x^3 - x^2 + 15x + 10)-(x^4 + 3x^3 + 2x - 4)\)

`=x^4 - 2x^3 - x^2 + 15x + 10-x^4 - 3x^3 - 2x + 4`

`= (x^4 - x^4) + (-2x^3 - 3x^3) - x^2 + (15x - 2x) + (10+4)`

`= -5x^3 - x^2 + 13x + 14`

`@` `\text {# Kaizuu lv u.}`