K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`a,`

`P(x)=M(x)+N(x)`

`P(x)=`\(\left(5x^4+8x^2-9x^3-12x-6\right)+\left(-5x^2+9x^3-5x^4+12x-8\right)\)

`P(x)= 5x^4+8x^2-9x^3-12x-6-5x^2+9x^3-5x^4+12x-8`

`P(x)=(5x^4-5x^4)+(-9x^3+9x^3)+(8x^2-5x^2)+(-12x+12x)+(-6-8)`

`P(x)=3x^2-14`

`b,`

`M(x)=N(x)+Q(x)`

`-> Q(x)=M(x)-N(x)`

`-> Q(x)=(5x^4+8x^2-9x^3-12x-6)-(-5x^2+9x^3-5x^4+12x-8)`

`Q(x)=5x^4+8x^2-9x^3-12x-6+5x^2-9x^3+5x^4-12x+8`

`Q(x)=(5x^4+5x^4)+(-9x^3-9x^3)+(8x^2+5x^2)+(-12x-12x)+(-6+8)`

`Q(x)=10x^4-18x^3+13x^2-24x+2`

a: M(x)=5x^4+4x^3+2x+1-5x^4+x^3+3x^2+x-1

=5x^3+3x^2+3x

b: N(x)=5x^4+4x^3+2x+1+5x^4-x^3-3x^2-x+1

=10x^4+3x^3-3x^2+x+2

`@` `\text {dnammv}`

` \text {M(x)-A(x)=B(x)}`

`-> \text {M(x)=A(x)+B(x)}`

`-> M(x)=(5x^4 + 4x^3 + 2x + 1)+(-5x^4 + x^3 + 3x^2 + x - 1)`

`= 5x^4 + 4x^3 + 2x + 1-5x^4 + x^3 + 3x^2 + x - 1`

`= (5x^4-5x^4)+(4x^3+x^3)+3x^2+(2x+x)+(1-1)`

`= 5x^3+3x^2+3x`

`b,`

`\text {N(x)=A(x)-B(x)}`

`N(x)=(5x^4 + 4x^3 + 2x + 1)-(-5x^4 + x^3 + 3x^2 + x - 1)`

`= 5x^4 + 4x^3 + 2x + 1+5x^4 - x^3 - 3x^2 - x + 1`

`= (5x^4+5x^4)+(4x^3-x^3)-3x^2+(2x-x)+(1+1)`

`= 10x^4+3x^3-3x^2+x+2`

19 tháng 12 2018

Ta có:

f(x) = -15x3 + 5x4 - 4x2 + 8x2 - 9x3 - x4 + 15 - 7x3

      = (5x4 - x4) - (15x3 + 9x3 + 7x3) + (-4x2 + 8x2) + 15

      = 4x4 - 31x3 + 4x2 + 15

22 tháng 3 2017

 f(1) = 4.14 - 31.13 + 4.12 + 15 = 4 - 31 + 4 + 15 = -8

f(-1) = 4.(-1)4 - 31.(-1)3 + 4.(-1)2 + 15 = 4 + 31 + 4 + 15 = 54

11 tháng 12 2018

Ta đặt và thực hiện các phép tính P(x) + Q(x) và P(x) – Q(x).

Giải bài 62 trang 50 SGK Toán 7 Tập 2 | Giải toán lớp 7

Giải bài 62 trang 50 SGK Toán 7 Tập 2 | Giải toán lớp 7

f(1)= -8

f(-1)= 38

học tốt !!!~~~~~

4 tháng 1 2017

Giải bài 62 trang 50 SGK Toán 7 Tập 2 | Giải toán lớp 7

b)

Sửa đề: f(x)=A(x)+B(x)

Ta có: f(x)=A(x)+B(x)

\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

\(=12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

a) Ta có: \(A\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)

\(=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\dfrac{1}{4}x\)

\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

Ta có: \(B\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)

\(=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\dfrac{1}{4}\)

\(=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)