1/1x3 1/2x3 1/2x5 1/3x5 1/3x7 1/4x7 1/4x9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2.5}+\frac{1}{3.5}+\frac{1}{3.7}+\frac{1}{4.7}+...+\frac{1}{9.19}+\frac{1}{10.19}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{4.5}+\frac{1}{6.5}+\frac{1}{6.7}+\frac{1}{8.7}+...+\frac{1}{18.19}+\frac{1}{20.19}\)
\(\Rightarrow\frac{1}{2}A=\frac{5-4}{4.5}+\frac{6-5}{6.5}+\frac{7-6}{6.7}+...+\frac{20-19}{20.19}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{19}-\frac{1}{20}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{4}-\frac{1}{20}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{5}\)
\(\Rightarrow A=\frac{2}{5}\)
Mình có cách giải khác:
A= \(\frac{1}{2.5}+\frac{1}{3.5}+\frac{1}{3.7}+\frac{1}{4.7}+...+\frac{1}{9.19}+\frac{1}{10.19}\)
A= \(\frac{2.1}{2.2.5}+\frac{2.1}{2.3.5}+\frac{2.1}{2.3.7}+\frac{2.1}{2.4.7}+...+\frac{2.1}{2.9.19}+\frac{2.1}{2.10.19}\)
A= \(\frac{2.1}{4.5}+\frac{2.1}{5.6}+\frac{2.1}{6.7}+\frac{2.1}{7.8}+...+\frac{2.1}{18.19}+\frac{2.1}{19.20}\)
A= \(2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
A=\(2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
A= \(2.\left(\frac{1}{4}+0+0+0+...+0+0-\frac{1}{20}\right)\)
A=\(2.\left(\frac{1}{4}-\frac{1}{20}\right)\)
A=\(2.\left(\frac{5}{20}-\frac{1}{20}\right)\)
A= \(2.\frac{1}{5}\)
A=\(\frac{2}{5}\)
Xong rùi đó!!!!! :))
\(A=\dfrac{1}{2.5}+\dfrac{1}{3.5}+\dfrac{1}{3.7}+...+\dfrac{1}{9.19}+\dfrac{1}{10.19}\)
\(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{18.19}+\dfrac{2}{19.20}\)
\(A=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{18.19}+\dfrac{1}{19.20}\right)\)
\(A=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)
\(A=2.\left(\dfrac{1}{4}-\dfrac{1}{20}\right)\)
\(A=2.\dfrac{1}{5}\)
\(A=\dfrac{2}{5}\)
\(\frac{1}{1.3}+\frac{1}{3.2}+\frac{1}{2.5}+...+\frac{1}{99.100}\)
= \(2.\left(\frac{1}{1.3.2}+\frac{1}{3.2.2}+\frac{1}{2.5.2}+...+\frac{1}{99.50.2}\right)\)
= \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
= \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
= \(2.\left(\frac{1}{2}-\frac{1}{100}\right)\)
= \(2.\frac{49}{100}\)
= \(\frac{49}{50}\)
a=511/256
b=647/20
c=mình đang suy nghĩ,nhưng nếu bạn k cho mình thì bạn sẽ có câu trả lời
a. 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
= 1 + ( 1 - 1/2) + ( 1/2 - 1/4) + ( 1/4 - 1/8) + ( 1/8 - 1/16) + ( 1/16 - 1/32) + (1/32 - 1/64) + ( 1/64 - 1/128) + (1/128 - 1/256)
= 1 + 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256
= 2 - 1/256
= 511/256
Câu b bạn có viết sai đề không vậy?
a=1/1x2+1/2x3+....+1/99x100
a=1-1/2+1/2-1/3+....+1/99-1/100
a=1-1/100
a=99/100
b=4/1x3+4/3x5+.....+4/51x53
b=2x(2/1x3+2/3x5+....+2/51x53)
b=2x(1-1/3+1/3-1/5+...+1/51-1/53)
b=2x(1-1/53)
b=2x52/53
b=104/53
đúng tick cho mình nha
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)
\(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{98}{99}=\dfrac{49}{99}>\dfrac{49}{100}=A\)
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)
Phương trình tương đương với:
\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)
c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)
\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)
\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
là sao ????=))
giữa các phân số là cộng hay trừ vậy???
\(\dfrac{1}{1.3}+\dfrac{1}{2.3}+\dfrac{1}{2.5}+\dfrac{1}{3.5}+\dfrac{1}{3.7}+\dfrac{1}{4.7}+\dfrac{1}{4.9}\)
\(=\dfrac{1}{1.3}+\dfrac{1}{3.2}+\dfrac{1}{2.5}+\dfrac{1}{5.3}+\dfrac{1}{3.7}+\dfrac{1}{7.4}+\dfrac{1}{4.9}\)
\(=\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\right):\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right):\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{9}\right):\dfrac{1}{2}\)
\(=\dfrac{7}{18}:\dfrac{1}{2}\)
\(=\dfrac{7}{9}\)