Cho A = 1/2x3/4x5/6x...x2499/2500
Chứng minh A< 1/49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=\frac{1.3.5....2011}{2.4.6....2012}$
$A^2=\frac{1.3}{2^2}.\frac{3.5}{4^2}.\frac{5.7}{6^2}....\frac{2009.2011}{2010^2}.\frac{2011}{2012^2}$
$=\frac{3}{4}.\frac{15}{16}.\frac{35}{36}....\frac{4040099}{4040100}.\frac{2011}{2012^2}$
$< 1.1.1.....1.\frac{2011}{2012^2}=\frac{2011}{2012^2}$
$<\frac{2011}{2012^2-1}=\frac{2011}{2011.2013}=\frac{1}{2013}$
Ta có đpcm.
=1/2-1/3+1/3-1/4+.......+1/a-1/a+1=49/100
1/2-1/a+1=49/100
1/a+1 = 1/2-49/100
1/a+1=1/100
a+1=100
a=99
=1/2-1/3+1/3-1/4+.......+1/a-1/a+1=49/100
1/2-1/a+1=49/100
1/a+1 = 1/2-49/100
1/a+1=1/100
a+1=100
a=99
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{999}{1000}\)
\(A=\frac{1.2.3...999}{2.3.4...1000}\)
\(A=\frac{1}{1000}\)
vậy A = B