K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM vuông tại A và ΔDMC có

BA/DM=AM/CD

nên ΔABM đồng dạng với ΔDMC

b: Ta có: ΔABM đồng dạng với ΔDMC

nên góc AMB=góc DCM

=>góc AMB+góc DMC=góc DCM+góc DMC=90 độ

=>góc BMC=90 độ

=>ΔBMC vuông tại M

c: \(S=MB\cdot\dfrac{MC}{2}=10\cdot\dfrac{20}{2}=100\left(cm^2\right)\)

5 tháng 3 2021

kho the minh moi lop2 - ok

a) Xét \(\Delta ABM\)và \(\Delta DMC\)có :

\(\widehat{BAM}=\widehat{MDC}\left(=90^0\right)\)

\(\frac{AB}{AM}=\frac{DM}{DC}\left(=\frac{3}{4}\right)\)

\(\Rightarrow\Delta ABM\infty\Delta DMC\left(c.g.c\right)\)

b) Từ \(\Delta ABM\infty\Delta DMC\)

\(\Rightarrow\widehat{AMB}=\widehat{DCM}\)

\(\Rightarrow\widehat{AMB}+\widehat{DMC}=\widehat{DCM}+\widehat{DMC}=90^0\)

\(\Rightarrow\widehat{BMC}=180^0-\left(\widehat{AMB}+\widehat{DMC}\right)=90^0\)

\(\Rightarrow\Delta MBC\)vuông tại M

c) \(MC=\sqrt{DM^2+DC^2}\)

\(=\sqrt{12^2+16^2}\)

\(=20\)

\(\Rightarrow S_{MBC}=\frac{10\times20}{2}=100\)

#phuongmato

a: Xét ΔABM vuông tại A và ΔDMC có

BA/DM=AM/CD

nên ΔABM đồng dạng với ΔDMC

b: Ta có: ΔABM đồng dạng với ΔDMC

nên góc AMB=góc DCM

=>góc AMB+góc DMC=góc DCM+góc DMC=90 độ

=>góc BMC=90 độ

=>ΔBMC vuông tại M

c: \(S=MB\cdot\dfrac{MC}{2}=10\cdot\dfrac{20}{2}=100\left(cm^2\right)\)

28 tháng 4 2018

Diện tích tam giác AMD là : 6 x6 : 2 = 18 ( cm2 )

Xét tam giác AMD và tam giác MDC có chung chiều cao hạ từ M xuống mặt khác có AM = ¼ DC ( vì AB =DC ) => diện tích tam giác MDC là : 18 x 4 = 72 ( cm2 )

Đáy DC là : 72 x 2 : 6 = 24 ( cm )

Diện tích hình chữ nhật ABCD là : 6 x 24 = 144 (cm2 )

Diện tích tam giác MBC là : 144 – 72 -18 = 54 (cm2 )

Chu vi hình chữ nhật ABCD là : ( 6+ 24 ) x 2= 60 (cm )