Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Xét ΔCDB có CQ/CD=CP/CB
nên QP//BD và QP=BD/2
Xét ΔEDB có EM/ED=EN/EB
nên MN//DB và MN=DB/2
=>QP//MN và QP=MN
Xét ΔDEC có DM/DE=DQ/DC
nên MQ//EC và MQ=EC/2
=>MQ vuông góc với AB
=>MQ vuông góc với PQ
=>MNPQ là hình chữ nhật
=>MP=NQ
a) Xét \(\Delta ABM\)và \(\Delta DMC\)có :
\(\widehat{BAM}=\widehat{MDC}\left(=90^0\right)\)
\(\frac{AB}{AM}=\frac{DM}{DC}\left(=\frac{3}{4}\right)\)
\(\Rightarrow\Delta ABM\infty\Delta DMC\left(c.g.c\right)\)
b) Từ \(\Delta ABM\infty\Delta DMC\)
\(\Rightarrow\widehat{AMB}=\widehat{DCM}\)
\(\Rightarrow\widehat{AMB}+\widehat{DMC}=\widehat{DCM}+\widehat{DMC}=90^0\)
\(\Rightarrow\widehat{BMC}=180^0-\left(\widehat{AMB}+\widehat{DMC}\right)=90^0\)
\(\Rightarrow\Delta MBC\)vuông tại M
c) \(MC=\sqrt{DM^2+DC^2}\)
\(=\sqrt{12^2+16^2}\)
\(=20\)
\(\Rightarrow S_{MBC}=\frac{10\times20}{2}=100\)
#phuongmato
Gọi H là trung điểm của AD
Xét hình thang ABCD có
H là trung điểm của AD
M là trung điểm của BC
Do đó: HM là đường trung bình của hình thang ABCD
Suy ra: HM//AB//CD
hay HM\(\perp\)AD
Xét ΔMAD có
MH là đường trung tuyến ứng với cạnh AD
MH là đường cao ứng với cạnh AD
Do đó: ΔMAD cân tại M