K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

có ai lm đc k

a: Xét ΔADB và ΔBCD có 

\(\widehat{BAD}=\widehat{DBC}\)

\(\widehat{ABD}=\widehat{BDC}\)

Do đó: ΔADB\(\sim\)ΔBCD

b: Ta có: ΔADB\(\sim\)ΔBCD

nên DB/CD=AB/BD=AD/BC

=>5/CD=3/5=3,5/BC

=>CD=25/3(cm); BC=35/6(cm)

29 tháng 3 2022

a, Xét ΔABD và ΔBDC có :

\(\widehat{A}=\widehat{DBC}\left(gt\right)\)

\(\widehat{ABD}=\widehat{BDC}\) (AB//CD, slt)

\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\)

b, Ta có : \(\Delta ABD\sim\Delta BDC\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{BD}=\dfrac{AD}{DC}\)

hay \(\dfrac{6}{12}=\dfrac{8}{BC}\)

\(\Rightarrow BC=\dfrac{12.8}{6}=16\left(cm\right)\)

29 tháng 4 2018

a)  Ta có:  \(\frac{4}{6}=\frac{6}{9}\left(=\frac{2}{3}\right)\)

hay   \(\frac{AB}{AD}=\frac{AD}{DC}\)

Xét  \(\Delta BAD\) và   \(\Delta ADC\)có:

\(\widehat{BAD}=\widehat{ADC}=90^0\)

\(\frac{AB}{AD}=\frac{AD}{DC}\)

suy ra:   \(\Delta BAD~\Delta ADC\)(c.g.c)

b)   \(\Delta BAD~\Delta ADC\)

  \(\Rightarrow\) \(\widehat{ABD}=\widehat{DAC}\)

mà   \(\widehat{ABD}+\widehat{ADB}=90^0\)

\(\Rightarrow\)\(\widehat{DAC}+\widehat{ADB}=90^0\)

\(\Rightarrow\)\(AC\)\(\perp\)\(BD\)

c)  Xét  \(\Delta AOB\)và   \(\Delta COD\)có:

    \(\widehat{OAB}=\widehat{OCD}\) (slt)

    \(\widehat{OBA}=\widehat{ODC}\) (slt)

suy ra:  \(\Delta AOB~\Delta COD\) (g.g)

\(\Rightarrow\)\(\frac{S_{AOB}}{S_{COD}}=\left(\frac{AB}{CD}\right)^2=\left(\frac{4}{9}\right)^2=\frac{16}{81}\)

tại sao diện tích tam giác aob/diện tích tam giác cod bằng (ab/cd)^2 giải thích hộ với

a: Xét ΔBAD vuông tại A và ΔADC vuông tại D có

BA/AD=AD/DC

=>ΔBAD đồng dạng với ΔADC

b: ΔBAD đồng dạng với ΔADC

=>góc BDA=góc ACD

Xét ΔOAD và ΔDAC có

góc ODA=góc DCA

góc A chung

=>ΔOAD đồng dạng với ΔDAC

=>góc AOD=góc ADC=90 độ

=>AC vuông góc BD tại O

c: Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng với ΔOCD

=>S OAB/S OCD=(AB/CD)^2=(4/9)^2=16/81