Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại A và ΔDMC có
BA/DM=AM/CD
nên ΔABM đồng dạng với ΔDMC
b: Ta có: ΔABM đồng dạng với ΔDMC
nên góc AMB=góc DCM
=>góc AMB+góc DMC=góc DCM+góc DMC=90 độ
=>góc BMC=90 độ
=>ΔBMC vuông tại M
c: \(S=MB\cdot\dfrac{MC}{2}=10\cdot\dfrac{20}{2}=100\left(cm^2\right)\)
Cậu tự kẻ hình nhé
a) Xét ΔABM và ΔDMC có: Góc A = góc D = 90o ; \(\dfrac{AB}{AM} = \dfrac{MD}{DC} = \dfrac{3}{4}\)
=> ΔABM đồng dạng với ΔDMC (c.g.c)
b) Có: ΔABM là Δ vuông tại A=> góc ABM + góc AMB =90o (1)
Lại có góc DMC = góc ABM (ΔABM ĐD ΔDMC) (2)
Từ (1) và (2): góc DMC + góc AMB = 90o
=> góc BMC = 180o - (góc DMC + góc AMB) = 180o - 90o = 90o
Vậy ΔBMC vuông tại M
Vì Am = 8 cm nên MD = 20 -8 = 12 (cm)
c, Áp dụng định lí Py-ta-go vào Δ vuông ABM:
\(MB = \sqrt{8^2 + 6^2} = \sqrt{100} = 10 (cm)\)
Áp dụng định lí Py-ta-go vào Δ vuông DMC:
\(MC = \sqrt{12^2 + 16^2} = \sqrt{400} = 20 (cm)\)
SΔBMC = \(\dfrac{MB.MC}{2} = \dfrac{10.20}{2} = 100 (cm^2)\)
Bài này số đẹp :v
a) Xét tam giác AOD và tam giác BAD có:
{Dˆ:chungAOˆD=DAˆB=90{D^:chungAO^D=DA^B=90⇒ΔAOD≀ΔBAD(g.g)⇒ΔAOD≀ΔBAD(g.g)
b) Ta có: DAˆO=ABˆD=ABˆO(ΔAOD≀ΔBAD)DA^O=AB^D=AB^O(ΔAOD≀ΔBAD)
Và AOˆD=AOˆB=90AO^D=AO^B=90 (2 đường chéo vuông góc tại O)
Do đó ΔAOD≀ΔBOA(g.g)ΔAOD≀ΔBOA(g.g)
⇒ADAB=ODAO⇒ADAB=ODAO (1)
Lại có: {DAˆO:chungAOˆD=ADˆC=90{DA^O:chungAO^D=AD^C=90⇒ΔADC≀ΔAOD(g.g)⇒ΔADC≀ΔAOD(g.g)
⇒CDOD=ADAO⇔CDAD=ODAO⇒CDOD=ADAO⇔CDAD=ODAO (2)
Từ (1);(2)⇒ADAB=CDAD⇒AD2=AB⋅CD⇒ADAB=CDAD⇒AD2=AB⋅CD
c) Ta có: AB song song với DC (ABCD là hình thang)
⇒ABˆO=ODˆC(slt)⇒AB^O=OD^C(slt)
Và AOˆB=DOˆC(đ2)AO^B=DO^C(đ2)
Do đó ΔOCD≀ΔOAB(g.g)ΔOCD≀ΔOAB(g.g)
⇒k=OCOA=CDAB=94⇒k=OCOA=CDAB=94
⇒SΔOCDSΔOAB=k2=942=8116⇒SΔOCDSΔOAB=k2=942=8116
Vậy........................
Δ : tam giác. Chúc bạn học tốt nhé!
Ta có : \(\widehat{AMB}+\widehat{BMC}+\widehat{DMC}=180^0\)
\(\Rightarrow\widehat{AMB}+\widehat{DMC}=90^0\)
Đồng thời : \(\widehat{AMB}+\widehat{ABM}=90^0\)
\(\Rightarrow\widehat{DMC}=\widehat{ABM}\)
Xét \(\Delta ABM\)VÀ \(\Delta DMC\)có :
\(\widehat{MAB}=\widehat{MDC}=90^0\)
\(\widehat{ABM}=\widehat{DMC}\)
Do đó \(\Delta ABM\)đồng dạng \(\Delta DMC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AM}=\frac{MD}{DC}\Rightarrow AB.DC=MD.AM\)
Mà \(AM=MD\) , nên : \(AB.DC=AM.AM\left(đpcm\right)\)
b ) Vì \(\Delta ABM\)đồng dạng \(\Delta DMC\)nên :
\(\frac{BM}{MC}=\frac{AB}{MD}\)hay \(\frac{BM}{MC}=\frac{AB}{AM}\)
Đồng thời : \(\widehat{MAB}=\widehat{MDC}=90^0\)
Do đó tam giác ABM đồng dạng tam giác MBC(c-g-c)
Chúc bạn học tốt !!!
2/AB/AC=3/4 nên AB=3AC/4(1)
Tam giác ABC vuông tại A, đường cao AH. Ta có: 1/AH2=1/AB2+1/AC2. Thay (1) vào rồi bạn giải phương trình sẽ tìm ra được AB, AC, BC từ đó sẽ ra chu vi tam giác ABC
a) Xét tam giác BHP và tam giác CHB có: \(\widehat{HPB}=\widehat{HBC}\)( cùng phụ góc PBH) (1)
và \(\widehat{PHB}=\widehat{BHC}\left(=90^o\right)\)
=> tam giác BHP ~ tam giác CHB
=> \(\frac{BH}{HC}=\frac{BP}{BC}\Leftrightarrow\frac{BH}{HC}=\frac{BQ}{DC}\)( vì BP=BQ, BC=DC)
Ta lại có : \(\widehat{HPB}=\widehat{HCD}\) ( so le trong) (2)
Từ (1) , (2) => \(\widehat{HBC}=\widehat{HCD}\) => \(\widehat{HBQ}=\widehat{HCD}\)
Xét tam giác HBQ và tam giác HCD có:
\(\frac{BH}{HC}=\frac{BQ}{DC}\); \(\widehat{HBQ}=\widehat{HCD}\)
=> tam giác HBQ ~tam giác HCD
b) Có: tam giác HBQ ~tam giác HCD ( theo a)
=> \(\widehat{DHC}=\widehat{QHB}\)
mà \(\widehat{QHB}+\widehat{QHC}=\widehat{BHC}=90^o\)
=> \(\widehat{DHC}+\widehat{QHC}=\widehat{DHQ}=90^o\)
a: Xét ΔABM vuông tại A và ΔDMC có
BA/DM=AM/CD
nên ΔABM đồng dạng với ΔDMC
b: Ta có: ΔABM đồng dạng với ΔDMC
nên góc AMB=góc DCM
=>góc AMB+góc DMC=góc DCM+góc DMC=90 độ
=>góc BMC=90 độ
=>ΔBMC vuông tại M
c: \(S=MB\cdot\dfrac{MC}{2}=10\cdot\dfrac{20}{2}=100\left(cm^2\right)\)