Nếu 2x+(-19) =-|-21|2x+(−19)=−∣−21∣ thì x nhận giá trị bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-\frac{3}{7}=\frac{-4}{3}\)
\(x=\frac{-4}{3}+\frac{3}{7}\)
\(x=-\frac{19}{21}\)
Vậy chọn đáp án \(a.\frac{-19}{21}\)
\(\dfrac{2x+19}{21}-\dfrac{2x+17}{23}=\dfrac{2x+7}{33}-\dfrac{2x+5}{35}\)
\(\Rightarrow\dfrac{2x+19}{21}-\dfrac{2x+17}{23}-\dfrac{2x+7}{33}+\dfrac{2x+5}{35}=0\)
\(\Rightarrow\left(\dfrac{2x+19}{21}+1\right)-\left(\dfrac{2x+17}{23}+1\right)-\left(\dfrac{2x+7}{33}+1\right)+\left(\dfrac{2x+5}{35}+1\right)=0\)
\(\Rightarrow\dfrac{2x+40}{21}-\dfrac{2x+40}{23}-\dfrac{2x+40}{33}+\dfrac{2x+40}{35}=0\)
\(\Rightarrow\left(2x+40\right)\left(\dfrac{1}{21}-\dfrac{1}{23}-\dfrac{1}{33}+\dfrac{1}{35}\right)=0\)
\(\Rightarrow2x+40=0\Rightarrow x=-20\)( do \(\dfrac{1}{21}-\dfrac{1}{23}-\dfrac{1}{33}+\dfrac{1}{35}>0\))
Ta có: \(\dfrac{2x+19}{21}-\dfrac{2x+17}{23}=\dfrac{2x+7}{33}-\dfrac{2x+5}{35}\)
\(\Leftrightarrow\left(2x+40\right)\left(\dfrac{1}{21}-\dfrac{1}{23}-\dfrac{1}{33}+\dfrac{1}{35}\right)=0\)
\(\Leftrightarrow2x+40=0\)
hay x=-20
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x-y}{2\cdot19-21}=\dfrac{34}{17}=2\)
Do đó: x=38;y=42
+) 2x = 3y => \(\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) (1)
5x = 7z => \(\dfrac{x}{7}=\dfrac{z}{5}\Rightarrow\dfrac{x}{21}=\dfrac{z}{15}\) (2)
Từ (1) và (2) => \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)
Áp dụng tính chất DTSBN : \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}=\dfrac{3x-7y+5z}{63-98+75}=\dfrac{30}{40}=\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\cdot21=15,75\\y=\dfrac{3}{4}\cdot14=10,5\\z=\dfrac{3}{4}\cdot15=11,25\end{matrix}\right.\)
+) Áp dụng tính chất DTSBN : \(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot19=38\\y=2\cdot21=42\end{matrix}\right.\)
a) Ta có: \(2x=3y\)
nên \(\dfrac{x}{3}=\dfrac{y}{2}\)
\(\Leftrightarrow\dfrac{x}{21}=\dfrac{y}{14}\)(1)
Ta có: 5x=7z
nên \(\dfrac{x}{7}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{x}{21}=\dfrac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)
hay \(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}\)
mà 3x-7y+5z=30
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}=\dfrac{3x-7y+5z}{63-98+75}=\dfrac{30}{40}=\dfrac{3}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x}{63}=\dfrac{3}{4}\\\dfrac{7y}{98}=\dfrac{3}{4}\\\dfrac{5z}{75}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{169}{4}\\7y=\dfrac{147}{2}\\5z=\dfrac{225}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{169}{12}\\y=\dfrac{21}{2}\\z=\dfrac{45}{4}\end{matrix}\right.\)
Vậy: (x,y,z)=\(\left(\dfrac{169}{12};\dfrac{21}{2};\dfrac{45}{4}\right)\)
b) Ta có: \(\dfrac{x}{19}=\dfrac{y}{21}\)
nên \(\dfrac{2x}{38}=\dfrac{y}{21}\)
mà 2x-y=34
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{19}=2\\\dfrac{y}{21}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)
Vậy: (x,y)=(38;42)