Cho tam giác ABC , trên cạnh AB lấy D sao cho AD=2BD . Từ D kẻ DE song song với BC ( E thuộc AC ) .Từ E kẻ EK song song với AB, K thuộc BC
Nêu các cặp tam giác đồng dạng, các cặp góc tương ứng bằng nhau, tỉ số đồng dạng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔADE đồng dạng với ΔABC
góc ADE=góc ABC, góc AED=góc ACB
k=AD/AB=2/5
b: DE//BC
=>AD/AB=DE/BC
=>DE/6,5=2/5
=>DE=2,6cm
Bài này là: Bài 27 trang 72 Toán 8 Tập 2 đúng không bạn
a) \(\Delta ABC\) có \(MN\) // \(BC\) \(\left(M\in AB;N\in AC\right)\Rightarrow\Delta AMN\sim\Delta ABC\) (định lí)
\(\Delta ABC\) có \(ML\) // \(AC\) \(\left(M\in AB;L\in BC\right)\Rightarrow\Delta MBL\sim\Delta ABC\) (định lí)
Vì \(\Delta AMN\sim\Delta ABC\) và \(\Delta MBL\sim\Delta ABC\)
\(\Rightarrow\Delta AMN\sim\Delta MBL\)
b) Xét \(\Delta AMN\sim\Delta ABC\) có:
\(\widehat{A}\) chung
\(\widehat{AMN}=\widehat{B};\widehat{ANM}=\widehat{C}\)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{MN}{BC}\)
Tỉ số đồng dạng : \(k=\dfrac{AM}{AB}=\dfrac{1}{2}\left(AM=\dfrac{1}{2}MB\right)\)
Xét \(\Delta MBL\sim\Delta ABC\) có:
\(\widehat{B}\) chung
\(\widehat{BML}=\widehat{A};\widehat{MLK}=\widehat{C}\)
\(\dfrac{BM}{BA}=\dfrac{BL}{BC}=\dfrac{ML}{AC}\)
Tỉ số đồng dạng: \(k'=\dfrac{BM}{BA}=\dfrac{2}{3}\)
Xét \(\Delta AMN\sim\Delta MBL\) có:
\(\widehat{AMN}=\widehat{B};\widehat{ANM}=\widehat{BLM};\widehat{A}=\widehat{BML}\)
\(\dfrac{AM}{MB}=\dfrac{AN}{ML}=\dfrac{MN}{BL}\)
Tỉ số đồng dạng: \(k''=\dfrac{AM}{MB}=\dfrac{1}{2}\)
a) ΔABC có MN // BC (M ∈ AB; N ∈ AC) ⇒ ΔAMN ΔABC.
ΔABC có ML // AC (M ∈ AB; L ∈ BC) ⇒ ΔMBL ΔABC
ΔAMN ΔABC; ΔMBL ΔABC ⇒ ΔAMN ΔMBL.
b) ΔAMN ΔABC có:
ΔMBL ΔABC có:
ΔAMN ΔMBL có:
a: ΔCEF đồng dạng với ΔCAB theo tỉ số k=CE/CA
ΔADE đồng dạng với ΔABC
=>k'=AD/AB=2/5
b: \(\dfrac{C_{ADE}}{C_{ABC}}=\dfrac{AD}{AB}=\dfrac{2}{5}\)
=>\(C_{ADE}=\dfrac{2}{5}\cdot\left(5+7+9\right)=\dfrac{2}{5}\cdot21=\dfrac{42}{5}\left(cm\right)\)
ΔCEF đồng dạng với ΔCAB
=>\(\dfrac{C_{CEF}}{C_{CAB}}=\dfrac{CE}{CA}=\dfrac{3}{5}\)
=>\(C_{CEF}=\dfrac{3}{5}\cdot\left(5+7+9\right)=\dfrac{3}{5}\cdot21=\dfrac{63}{5}\left(cm\right)\)
a: Xét ΔABC có DE//BC
nên DE/BC=AD/AB
=>DE/10=3/5
=>DE=6cm
b: Xét ΔADE và ΔCGE có
góc AED=góc CEG
góc EAD=góc ECG
=>ΔADE đồng dạng với ΔCGE
c: Xét tứ giác DBCG có
DG//BC
DB//CG
=>DBCG là hình bình hành
=>DB=CG
a, Tam giác ABC có MN // BC \(\left(M\in AB;N\in AC\right)\)=> Tam giác AMN tam giác ABC
Tam giác ABC có ML // AC \(\left(M\in AB;L\in BC\right)\)=> Tam giác MBL tam giác ABC
Tam giác AMN tam giác ABC ; tam giác MBL tam giác ABC = >Tam giác AMN MBL
b, Tam giác AMN tam giác ABC , ta có :
\(\widehat{A} chung ,\widehat{AMN}=\widehat{B} ; \widehat{ANC}=\widehat{C}\)
\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)
Tỉ số đồng dạng \(k=\frac{AM}{AB}=\frac{1}{3}\)( Vì AM = \(\frac{1}{2}\)MB )
Tam giác AMNtam giác ABC có :
\(\widehat{B}\)chung ; \(\widehat{BML}=\widehat{A}\); \(\widehat{MLB}=\widehat{C}\)
\(\frac{BM}{BA}=\frac{BL}{BC}=\frac{ML}{AC}\)
Tỉ số đồng dạng \(k'=\frac{BM}{BA}=\frac{2}{3}\)
Tam giác AMN tam giác MBL , ta có :
\(\widehat{AMN}=\widehat{B};\widehat{ANM}=\widehat{BLM};\widehat{A}=\widehat{BLM}\)
\(\frac{AM}{MB}=\frac{AN}{ML}=\frac{MN}{BL}\)
=> Tiwr số đồng dạng \(k''=\frac{AM}{MB}=\frac{1}{2}\)
a: Xét ΔACB và ΔCEK có
góc ACB=góc CEK(=góc AED)
góc BAC=góc KCE
=>ΔACB đồng dạng với ΔCEK
b: Xét ΔHEK và ΔHCB có
góc HEK=góc HCB
góc EHK=góc CHB
=>ΔHEK đồng dạng với ΔHCB
=>EK/CB=HE/HC
=>EK*HC=CB*HE