K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔADE đồng dạng với ΔABC

góc ADE=góc ABC, góc AED=góc ACB

k=AD/AB=2/5

b: DE//BC

=>AD/AB=DE/BC

=>DE/6,5=2/5

=>DE=2,6cm

26 tháng 10 2017

Giải bài 27 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) ΔABC có MN // BC (M ∈ AB; N ∈ AC) ⇒ ΔAMN Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC.

ΔABC có ML // AC (M ∈ AB; L ∈ BC) ⇒ ΔMBL Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC

ΔAMN Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC; ΔMBL Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC ⇒ ΔAMN Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔMBL.

b) ΔAMN Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC có:

Giải bài 27 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

ΔMBL Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC có:

Giải bài 27 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

ΔAMN Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔMBL có:

Giải bài 27 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

1 tháng 3 2023

Bài này là: Bài 27 trang 72 Toán 8 Tập 2 đúng không bạn 

a) \(\Delta ABC\)\(MN\) // \(BC\) \(\left(M\in AB;N\in AC\right)\Rightarrow\Delta AMN\sim\Delta ABC\) (định lí)

\(\Delta ABC\) có \(ML\) // \(AC\) \(\left(M\in AB;L\in BC\right)\Rightarrow\Delta MBL\sim\Delta ABC\) (định lí)

\(\Delta AMN\sim\Delta ABC\) và \(\Delta MBL\sim\Delta ABC\)

\(\Rightarrow\Delta AMN\sim\Delta MBL\)

b) Xét \(\Delta AMN\sim\Delta ABC\) có:

\(\widehat{A}\) chung

\(\widehat{AMN}=\widehat{B};\widehat{ANM}=\widehat{C}\)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{MN}{BC}\)

Tỉ số đồng dạng : \(k=\dfrac{AM}{AB}=\dfrac{1}{2}\left(AM=\dfrac{1}{2}MB\right)\)

Xét \(\Delta MBL\sim\Delta ABC\) có:

\(\widehat{B}\) chung

\(\widehat{BML}=\widehat{A};\widehat{MLK}=\widehat{C}\)

\(\dfrac{BM}{BA}=\dfrac{BL}{BC}=\dfrac{ML}{AC}\)

Tỉ số đồng dạng: \(k'=\dfrac{BM}{BA}=\dfrac{2}{3}\)

Xét \(\Delta AMN\sim\Delta MBL\) có:

\(\widehat{AMN}=\widehat{B};\widehat{ANM}=\widehat{BLM};\widehat{A}=\widehat{BML}\)

\(\dfrac{AM}{MB}=\dfrac{AN}{ML}=\dfrac{MN}{BL}\)

Tỉ số đồng dạng: \(k''=\dfrac{AM}{MB}=\dfrac{1}{2}\)

23 tháng 3 2020

A B C M N L

a, Tam giác ABC có MN // BC \(\left(M\in AB;N\in AC\right)\)=> Tam giác AMN Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8tam giác ABC

Tam giác ABC có ML // AC \(\left(M\in AB;L\in BC\right)\)=> Tam giác MBL Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8tam giác ABC

Tam giác AMN Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8tam giác ABC ; tam giác MBL Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8tam giác ABC = >Tam giác AMN Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8MBL

b, Tam giác AMN Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8tam giác ABC , ta có :

\(\widehat{A} chung ,\widehat{AMN}=\widehat{B} ; \widehat{ANC}=\widehat{C}\)

\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)

Tỉ số đồng dạng \(k=\frac{AM}{AB}=\frac{1}{3}\)( Vì AM = \(\frac{1}{2}\)MB )

Tam giác AMNGiải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8tam giác ABC có :

\(\widehat{B}\)chung ; \(\widehat{BML}=\widehat{A}\)\(\widehat{MLB}=\widehat{C}\)

\(\frac{BM}{BA}=\frac{BL}{BC}=\frac{ML}{AC}\)

Tỉ số đồng dạng \(k'=\frac{BM}{BA}=\frac{2}{3}\)

Tam giác AMN Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8tam giác MBL , ta có :

\(\widehat{AMN}=\widehat{B};\widehat{ANM}=\widehat{BLM};\widehat{A}=\widehat{BLM}\)

\(\frac{AM}{MB}=\frac{AN}{ML}=\frac{MN}{BL}\)

=> Tiwr số đồng dạng \(k''=\frac{AM}{MB}=\frac{1}{2}\)

19 tháng 12 2017

22 tháng 4 2017

a) MN // BC => ∆AMN ∽ ∆ABC

ML // AC => ∆MBL ∽ ∆ABC

và ∆AMN ∽ ∆MLB

b)

∆AMN ∽ ∆ABC có:

AMN^ = ABC^; ANM^ = ACB^

AMAB= 13

∆MBL ∽ ∆ABC có:

MBL^ = BAC^, B^ chung, MLB^ = ACB^

MBAB= 23

∆AMN ∽ ∆MLB có:

MAN^ = BML^, AMN^ = MBL^, ANM^ =

a: ΔCEF đồng dạng với ΔCAB theo tỉ số k=CE/CA

ΔADE đồng dạng với ΔABC

=>k'=AD/AB=2/5

b: \(\dfrac{C_{ADE}}{C_{ABC}}=\dfrac{AD}{AB}=\dfrac{2}{5}\)

=>\(C_{ADE}=\dfrac{2}{5}\cdot\left(5+7+9\right)=\dfrac{2}{5}\cdot21=\dfrac{42}{5}\left(cm\right)\)

ΔCEF đồng dạng với ΔCAB

=>\(\dfrac{C_{CEF}}{C_{CAB}}=\dfrac{CE}{CA}=\dfrac{3}{5}\)

=>\(C_{CEF}=\dfrac{3}{5}\cdot\left(5+7+9\right)=\dfrac{3}{5}\cdot21=\dfrac{63}{5}\left(cm\right)\)