tìm các số hữu tỉ x,y,z biết:
x+y=-7/6
y+z=1/4
x+z=1/12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Ta có :
x + y + y +z + z + x = \(-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}=-\frac{5}{6}\)
=> 2 ( x + y +z )= \(-\frac{5}{6}\)
=> x + y + z = \(-\frac{5}{6}:2=-\frac{5}{6}\cdot\frac{1}{2}=-\frac{5}{12}\)
=> z = ( x + y +z ) - ( x + y) = \(-\frac{5}{12}-\left(-\frac{7}{6}\right)=-\frac{5}{12}+\frac{7}{6}=\frac{3}{4}\)
Tìm y ; x tương tự
Cộng theo vế 3 dữ kiện của bài toán ta được:
\(\left(x+y+z\right)^2=36\)
<=> \(x+y+z=\pm6\)
TH1: x+y+z=6
=> x= -12:6=-2
y = 18:6=3
z= 30:6=5
TH2 : x+y+z =-6
=> x= -12:-6=2
y= 18:-6=-3
z= 30:-6=-5
Vậy các cặp số hữu tỉ (x;y;z) là : \(\left(-2;3;5\right);\left(2;-3;-5\right)\)
a) \(4x-2=x\)
\(4x-x=2\)
\(3x=2\)
\(x=\dfrac{2}{3}\)
b) Thay \(x=1,y=3\) ta có \(3=a.1\Rightarrow a=3\)
Vậy hàm số cần tìm là \(y=3x\)
c) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{x+y+z}{1+2+3}=\dfrac{180}{6}=30\)
\(\Rightarrow\left\{{}\begin{matrix}x=30\times1=30\\y=30\times2=60\\z=30\times3=90\end{matrix}\right.\)
easy lắm
Công vế theo vế ta được : x+y+y+z+x+z=\(\frac{-7}{6}\)+\(\frac{1}{4}\)+\(\frac{1}{12}\)=\(\frac{-5}{6}\)
Suy ra 2.(x+y+z)=\(\frac{-5}{6}\) suy ra x+y+z=\(\frac{-5}{12}\)
suy ra x+y=\(\frac{-5}{12}\)-z ; y+z=\(\frac{-5}{12}\)-x ; x+z=\(\frac{-5}{12}\)-y
Thay vào ta có : \(\frac{-5}{12}\)-z=\(\frac{-7}{6}\) suy ra z= \(\frac{3}{4}\)
\(\frac{-5}{12}\)-x=\(\frac{1}{4}\) suy ra x=\(\frac{-2}{3}\)
\(\frac{-5}{12}\)-y=\(\frac{1}{12}\) suy ra y=\(\frac{-1}{2}\)
easy Hok tốt nhé b
\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)
Áp dụng Bđt Bunhiacopxki :
\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)
Đặt \(t=x+y+z+8\)
\(\left(1\right)\Leftrightarrow t^2=56t-784\)
\(\Leftrightarrow t^2-56t+784=0\)
\(\Leftrightarrow\left(t-28\right)^2=0\)
\(\Leftrightarrow t=28\)
\(\Leftrightarrow x+y+z+8=28\)
\(\Leftrightarrow x+y+z-6=14\)
\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài
d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)
\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)
\(\Rightarrow\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy \(x=-3\); \(y=-4\); \(z=-5\)
e) \(x\left(x+y+z\right)=-12\); \(y\left(y+z+x\right)=18\); \(z\left(z+x+y\right)=30\)
\(\Rightarrow x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=-12+18+30\)
\(\Leftrightarrow\left(x+y+z\right)^2=36\)\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)
TH1: Nếu \(x+y+z=-6\)\(\Rightarrow x=\frac{-12}{-6}=2\); \(y=\frac{18}{-6}=-3\); \(z=\frac{30}{-6}=-5\)
TH2: Nếu \(x+y+z=6\)\(\Rightarrow x=\frac{-12}{6}=-2\); \(y=\frac{18}{6}=3\); \(z=\frac{30}{6}=5\)
Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn là \(\left(2;-3;-5\right)\), \(\left(-2;3;5\right)\)
Hai lần tổng của 3 số x ,y ,z là
-7/6+1/4+1/12 = -5/6
Tổng của ba số đó là
-5/6 : 2= -5/12
Vậy x=-5/12-1/4=-2/3
y=-5/12-1/12=-1/2
z=-5/12+7/6=3/4