giai phuong trinh 5^4-2 x^2 +3x^2√(x^2 +2)=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có: x(x+3)(x^2+3x+4)=-4
\(\Leftrightarrow\)(x^2+3x)(x^2+3x+4)+4=0
\(\Leftrightarrow\)(x^2+3x)\(^2\)+4(x^2+3x)+4=0
\(\Leftrightarrow\)(x^2+3x+2)\(^2\)=0
\(\Leftrightarrow\)x\(^2\)+3x+2=0
\(\Leftrightarrow\)(x+1)(x+2)=0
\(\Leftrightarrow\)x+1=0 hoặc x+2=0
*) Nếu x+2=0\(\Leftrightarrow\)x=-2
*) Nếu x+1=0\(\Leftrightarrow\)x=-1
Vậy S={ 2;-1}
\(x^4+3x^2+x^3+2x+2=0\)
\(\Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)=0\)
Do 2 thừa số ở VT đều > 0
\(\Rightarrow\) PTVN
\(x^4+x^3+3x^2+2x+2=0\\ \Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(VN\right)\\x^2+2=0\left(VN\right)\end{matrix}\right.\)
Vậy phương trình vô nghiệm
Lời giải:
Với mọi $x$ thuộc ĐKXĐ, ta luôn có:
\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}\geq 0\\ \sqrt{x^2+3x+1}\geq 0\end{matrix}\right.\)
Do đó, để \(\sqrt{3x+x^2+\frac{9}{4}}+\sqrt{x^2+3x+1}=0\) thì:
\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}= 0\\ \sqrt{x^2+3x+1}=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x=\frac{-3}{2}\\ x=\frac{3\pm \sqrt{5}}{2}\end{matrix}\right.\) (vô lý)
Do đó pt vô nghiệm.
nếu dòng cuối tìm đc x là cùng 1 số thì số đó là nghiệm của pt đúng ko ạ?
c.
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Giải phương trình
10
Đơn giản biểu thức
11
Giải phương trình
12
Đơn giản biểu thức
13
Lời giải thu được
a,
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Đơn giản biểu thức
10
Lời giải thu được
VT=(x-1)3+(2-x)(4+2x+x2)+3x(x+2)=9x+7 (*)
thay (*) vào VT của pt đầu ta đc
=>9x+7=17
=>9x=10
=>x=\(\frac{10}{9}\)