cmr : n^2+3n+5 ko chia hết cho 121
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm câu a thôi nha
a) Giả sử tồn tại n thuộc N sao cho n2 +3n+5 chia hết cho 121
=>(n2 +3n+5) chia het cho 121 =>4(n2+3n+5) chia hét cho 121
=> (2n+3)2 +11 chia hết cho 121 (*)
=> 4(n2+3n+5) chia hết cho 11 => (2n+3)2 +11 chia hết cho 11
=>(2n+3)2 chia hết cho 11; vì 11 là số nguyên tố => (2n+3)2 chia hết cho 121 (**)
Từ (*) và (**) => 11 chia hết cho 121 ( vô lí) => Điều giả sử là sai
=> A không chia hết cho 121
B,C làm tương tự nhé
Làm lại:
b) Ta có: B = n2 + 3n + 4 = n2 - 2n + 5n - 10 + 14 = (n - 2)(n + 5) + 14
Mà (n + 5) - (n - 2) = 7 => n - 2 và n + 5 cùng chia hết cho 7 hoặc không cùng chia hết cho 7.
+ Xét n + 5 và n - 2 cùng chia hết cho 7 thì (n - 2)(n + 5) chia hết cho 49 mà 14 không chia hết cho 49 nên B không chia hết cho 49.
+ Xét n + 5 và n - 2 không cùng chia hết cho 7 thì (n - 2)(n + 5) không chia hết cho 7 mà 14 chia hết cho 7 nên B không chia hết cho 49.
Vậy, n2 + 3n + 4 không chia hết cho 49.
E mới hk lớp 8 nên chỉ thử có j thông cảm!!
Giả sử tồn tại số tự nhiên n thỏa mãn \(n^2+3n+5⋮121\)
=> \(4\left(n^2+3n+5\right)⋮121\)
=> \(\left(4n^2+12n+9\right)+11⋮121\)
=> \(\left(2n+3\right)^2+11⋮121\)
Vì \(4\left(n^2+3n+5\right)⋮11\) ( vì \(121⋮11\)) và \(11⋮11\)
=> \(\left(2n+3\right)^2⋮11\)
=> \(\left(2n+3\right)^2⋮121\) ( vì 11 là số nguyên tố)
=> \(\left(2n+3\right)^2+11\) không chia hết cho 121 ( vì 11 không chia hết cho 121)
hay \(4\left(n^2+3n+5\right)\) không chia hết cho 121
=> \(n^2+3n+5\) ko chia hết cho 121 ( vì 4 và 121 nguyên tố cùng nhau) ( đpcm)
Giả sử A = n^2 + 3n + 5 chia hết cho 121
=> 4A = 4n^2 + 12n + 20 chia hết cho 121
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1)
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11)
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2)
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí)
Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N . k cho mình nha bạn
Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải
Chứng minh bằng phương pháp phản chứng:
Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì:
A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)
Với n = k + 1 thì
A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)
⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121
⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121
⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121
⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121
⇒ 2k + 4 ⋮ 121
⇒ 2.(k + 2) ⋮ 121
⇒ k + 2 ⋮ 121 (1)
Mà ta có: k2 + 3k + 5 ⋮ 121
⇒ k(k + 2) + (k + 2) + 3 ⋮ 121
⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)
Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)
Vậy điều giả sử là sai hay
A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)