\(n^2+3n+5⋮11\Leftrightarrow n=11k+4\left(k\in Z\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

a)\(n^2+3n+5\)

\(=\left(11k+4\right)^2+3\left(11k+4\right)+5\)

\(=121k^2+88k+16+33k+12+5\)

\(=121k^2+121k+33⋮11\)\(\Rightarrow n^2+3n+5⋮11\)

b)Có: \(n^2+3n+5\)\(=121k^2+121k+33\)\(⋮̸\)\(121\)

\(\Rightarrow n^2+3n+5⋮̸\)\(121\)

17 tháng 9 2017

xét (2a+3b)(2b+3a)=\(4ab+6b^2+9ab+6a^2=6\left(a^2+b^2\right)+13ab\)

mặ khác ta có \(13ab⋮13\)\(a^2+b^2⋮13\left(gt\right)\Rightarrow6\left(a^2+b^2\right)⋮13\)\(\Rightarrow\left(2a+3b\right)\left(2b+3a\right)⋮13\)

\(\Rightarrow\)2a+3b hoặc 2b+3a chia hết cho 13

11 tháng 1 2020

E mới hk lớp 8 nên chỉ thử có j thông cảm!!

Giả sử tồn tại số tự nhiên n thỏa mãn \(n^2+3n+5⋮121\)

=> \(4\left(n^2+3n+5\right)⋮121\)

=> \(\left(4n^2+12n+9\right)+11⋮121\)

=> \(\left(2n+3\right)^2+11⋮121\)

Vì \(4\left(n^2+3n+5\right)⋮11\)  ( vì \(121⋮11\)) và \(11⋮11\)

=> \(\left(2n+3\right)^2⋮11\)

=> \(\left(2n+3\right)^2⋮121\)  ( vì 11 là số nguyên tố)

=> \(\left(2n+3\right)^2+11\) không chia hết cho 121  ( vì 11 không chia hết cho 121)

hay \(4\left(n^2+3n+5\right)\) không chia hết cho 121

=> \(n^2+3n+5\) ko chia hết cho 121 ( vì 4 và 121 nguyên tố cùng nhau)   ( đpcm)

7 tháng 9 2015

* Giả sử n=1 thì 33.1+3 – 26.1 – 27=676 chia hết cho 676

* Xét n=k thì 33k+3 -26k – 27 sẽ chia hết cho 676

* Nếu n=k+1 ta có:

        33(k+1)+3 – 26(k+1) – 27

 ó33k+6 – 26k – 26 -27

 ó33k+3.33 – 26k - 26 -27

 ó(33k+3 – 26k -27) + 33k+3.32 – 26

Đến đây ta nhận thấy:

* 33k+3 -26k – 27 chia hết cho 676 (giả sử thứ 2)

* Do 33k+3 -26k – 27 chia hết cho 676 nên 33k+3 cũng chia hết cho 676

=> 33k+3.32 cũng chia hết cho 676

* 26 cũng chia hết 676

Vậy 33k+3 -26k – 27 chia hết cho 675 (đpcm)                                            

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6