K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2015

Mình làm câu a thôi nha

a) Giả sử tồn tại n thuộc N sao cho n2 +3n+5 chia hết cho 121

=>(n2 +3n+5) chia het cho 121 =>4(n2+3n+5) chia hét cho 121

=> (2n+3)2 +11 chia hết cho 121  (*)

=> 4(n2+3n+5) chia hết cho 11 => (2n+3)2 +11 chia hết cho 11

=>(2n+3)2 chia hết cho 11; vì 11 là số nguyên tố => (2n+3)2 chia hết cho 121  (**)

Từ (*) và (**) => 11 chia hết cho 121 ( vô lí) => Điều giả sử là sai

=> A không chia hết cho 121

B,C làm tương tự nhé 

14 tháng 11 2015

Làm lại:

b) Ta có: B = n2 + 3n + 4 = n2 - 2n + 5n - 10 + 14 = (n - 2)(n + 5) + 14

Mà (n + 5) - (n - 2) = 7 => n - 2 và n + 5 cùng chia hết cho 7 hoặc không cùng chia hết cho 7.

+ Xét n + 5 và n - 2 cùng chia hết cho 7 thì (n - 2)(n + 5) chia hết cho 49 mà 14 không chia hết cho 49 nên B không chia hết cho 49.

+ Xét n + 5 và n - 2 không cùng chia hết cho 7 thì (n - 2)(n + 5) không chia hết cho 7 mà 14 chia hết cho 7 nên B không chia hết cho 49.

Vậy, n2 + 3n + 4 không chia hết cho 49. 

13 tháng 11 2015

tick cho mình rồi mình làm cho

13 tháng 11 2015

chưa học đến

cô dạy chậm không cho mình chuyển bậc

1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

14 tháng 6 2017

\(a,n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)=n\left(n^2-1\right)\left(n^2-4\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)(chia hết cho 1;2;3;4;5)\(\Rightarrowđpcm\)

b,
A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).

14 tháng 6 2017

Câu hỏi của CoRoI - Toán lớp 8 - Học toán với OnlineMath

15 tháng 12 2016

làm câu

5 tháng 8 2018

a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\)\(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)

Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)

Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0

b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)

\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3

Đặt n=3k+1 và n=3k+2. Tự thế vài và CM

c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)

\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)

Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Dễ thấy đẳng thức trên chia hết cho 5

Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)

Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)

Và tích của hai số bất kì cũng chia hết cho 2

Vậy đẳng thức trên chia hết cho 3.4.2.5=120

Cậu cuối bn chứng minh cách tương tự. :)

Mik cảm ơn bn nhìu nha!!!!^-^!!!