K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2015

Mình làm câu a thôi nha

a) Giả sử tồn tại n thuộc N sao cho n2 +3n+5 chia hết cho 121

=>(n2 +3n+5) chia het cho 121 =>4(n2+3n+5) chia hét cho 121

=> (2n+3)2 +11 chia hết cho 121  (*)

=> 4(n2+3n+5) chia hết cho 11 => (2n+3)2 +11 chia hết cho 11

=>(2n+3)2 chia hết cho 11; vì 11 là số nguyên tố => (2n+3)2 chia hết cho 121  (**)

Từ (*) và (**) => 11 chia hết cho 121 ( vô lí) => Điều giả sử là sai

=> A không chia hết cho 121

B,C làm tương tự nhé 

14 tháng 11 2015

Làm lại:

b) Ta có: B = n2 + 3n + 4 = n2 - 2n + 5n - 10 + 14 = (n - 2)(n + 5) + 14

Mà (n + 5) - (n - 2) = 7 => n - 2 và n + 5 cùng chia hết cho 7 hoặc không cùng chia hết cho 7.

+ Xét n + 5 và n - 2 cùng chia hết cho 7 thì (n - 2)(n + 5) chia hết cho 49 mà 14 không chia hết cho 49 nên B không chia hết cho 49.

+ Xét n + 5 và n - 2 không cùng chia hết cho 7 thì (n - 2)(n + 5) không chia hết cho 7 mà 14 chia hết cho 7 nên B không chia hết cho 49.

Vậy, n2 + 3n + 4 không chia hết cho 49.