K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

A C B D E F

14 tháng 12 2023

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=5^2+12^2=169\)

=>\(BC=\sqrt{169}=13\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{5}{13}\)

nên \(\widehat{B}\simeq23^0\)

Ta có: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}\simeq90^0-23^0=67^0\)

b: Ta có: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}=90^0-40^0=50^0\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(BC=\dfrac{AC}{sinB}=\dfrac{5}{sin40}\simeq7,78\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB^2=BC^2-AC^2\)

=>\(AB\simeq\sqrt{7,78^2-5^2}\simeq5,96\left(cm\right)\)

 

a:

Sửa đề tam giác DEC

Xet ΔABC vuông tại A và ΔDEC vuông tại D có

góc C chung

=>ΔABC đồng dạng với ΔDEC

b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)

\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)

AD là phân giác

=>BD/AB=CD/AC

=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)

=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)

6 tháng 3 2022

A,tại B

2 tháng 5 2016

Ta có : 3^2+4^2=9+16=25 

Căn bậc hai của 25 bằng 5 suy ra tam giac ABC vuong tai A 

2 tháng 5 2016

ta có:

\(AB^2+AC^2=3^2+4^2=9+16=25\)

\(BC^2=5^2=25\)

=> tam giác ABC vuông tại A

20 tháng 2 2022

Áp dụng đlý Pytago vào tam giác ABC:

AC2=BC2+AB2

52=42+32

52=25

Vậy tam giác ABC là tam giác vuông tại B (dpcm)

25 tháng 10 2018

Xét tam giác ABC vuông tại A có:

Đáp án cần chọn là: A

a: Sửa đề: Tính BC

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=5^2+12^2=169\)

=>\(BC=\sqrt{169}=13\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔABD vuông tại A có

AB chung

AC=AD

Do đó: ΔABC=ΔABD

c: Ta có: ΔABC=ΔABD

=>\(\widehat{ABC}=\widehat{ABD}\)

Xét ΔBEA vuông tại E và ΔBFA vuông tại F có

BA chung

\(\widehat{EBA}=\widehat{FBA}\)

Do đó: ΔBEA=ΔBFA

=>AE=AF

=>ΔAEF cân tại A

4 tháng 5 2023

Hình vẽ:

B A H C 5cm 12cm

Giải

a. Xét ΔHBA và ΔABC có:

\(\widehat{B}\)  chung

\(\widehat{BHA}=\widehat{BAC}=90^0\)

⇒ΔHBA ∼ ΔABC (g.g)

b. Xét ΔABC vuông tại A có:

\(BC^2=AB^2+AC^2\)(định lí py-ta-go)

         \(=5^2+12^2\)

         \(=169\)

\(\rightarrow BC=\sqrt{169}=13\left(cm\right)\)

Vì ΔABC ∼ ΔHBA (cmt)

\(\rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{5}{BH}=\dfrac{12}{AH}=\dfrac{13}{5}\)

\(BH=\dfrac{5.5}{13}=\dfrac{25}{13}\left(cm\right)\)

\(AH=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)

a) Xét ΔABC có 

\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)

\(\Leftrightarrow\widehat{B}=37^0\)

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)

mà BD+CD=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)