K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(a^2+b^2+c^2=2016\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=2016^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=2016^2\)

\(\Leftrightarrow a^4+b^4+c^4=2016^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)\)

Lại có : \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow2016+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=-2016\)

\(\Leftrightarrow ab+bc+ac=-1008\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=\left(-1008\right)^2\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2a^2bc+2ab^2c+2abc^2=1008^2\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=1008^2\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=1008^2\)

Nên : \(A=a^4+b^4+c^4=2016^2-2.1008^2=4064251,587\)

15 tháng 5 2018

bạn làm sai rồi

2016^2 - 2.1008^2 = 2032128

20 tháng 8 2023

Có: \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)=-1\) (do \(a^2+b^2+c^2=1\) )

\(\Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2ab.bc+2bc.ca+2ca.ab=\dfrac{1}{4}\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)

\(\Leftrightarrow \left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\) (do \(a+b+c=0\))

Lại có: \(M=a^4+b^4+c^4\)

\(=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2 +b^2c^2+c^2a^2\right)\)

\(=1-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]\) (do \(a^2+b^2+c^2=1\))

\(=1-2.\dfrac{1}{4}\)(do \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\))

\(=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Vậy \(M=\dfrac{1}{2}\)

2 tháng 9 2016
A = 2032128
15 tháng 5 2018

A = 2032128

15 tháng 2 2020

+) Ta có : \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow2\left(ab+bc+ca\right)=-2016\)

\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-2013\right)^2\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=2013^2\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=2013^2\)( Do \(a+b+c=0\) )

+) Lại có : \(a^2+b^2+c^2=2016\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=2016^2\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2016^2\)

\(\Rightarrow a^4+b^4+c^4=2016^2-2.2013^2=-4040082\)

Hay : \(A=-4040082\)

Vậy \(A=-4040082\) với a,b,c thỏa mãn đề.

8 tháng 4 2022

ĐK : a;b;c khác 0 

Thấy : \(a^2+b^2+c^2=\left(a+b+c\right)^2\Leftrightarrow ab+bc+ac=0\) (1)

Ta có : \(P=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)

Từ (1) suy ra : \(\left(b+c\right)a=-bc\Leftrightarrow\dfrac{b+c}{a}=\dfrac{-bc}{a^2}\)   

CMTT ; ta có : \(\dfrac{c+a}{b}=\dfrac{-ac}{b^2};\dfrac{a+b}{c}=\dfrac{-ab}{c^2}\)

Suy ra : \(P=-\left(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ac}{b^2}\right)=-\dfrac{a^3b^3+b^3c^3+a^3c^3}{a^2b^2c^2}\)  (2) 

Đặt : ab = x ; bc = y ; ac = z ; ta có : x + y + z = 0 \(\Rightarrow x^3+y^3+z^3=3xyz\)  (3)

Từ (2) và (3) suy ra : \(P=-\dfrac{3xyz}{xyz}=-3\)

Vậy ... 

11 tháng 12 2016

đặt \(\frac{a}{2014}\)=\(\frac{b}{2015}\)=\(\frac{c}{2016}\)= K

---> a = 2014k, b=2015k , c=2016k

về trái : 4. ( 2014k-2015k). (2015k-2016k)=4. (-1k).(-1k)=4k2

Về phai: (2016k-2014k)2=(2k)2=4k2

---> ve trai = ve phai----> dpcm

NV
30 tháng 8 2021

\(\dfrac{a^5}{b^3+c^2}+\dfrac{b^3+c^2}{4}+\dfrac{a^4}{2}\ge3\sqrt[3]{\dfrac{a^9.\left(b^3+c^2\right)}{8\left(b^3+c^2\right)}}=\dfrac{3a^3}{2}\)

Tương tự và cộng lại:

\(\Rightarrow M-\dfrac{a^4+b^4+c^4}{2}+\dfrac{a^3+b^3+c^3}{4}+\dfrac{a^2+b^2+c^2}{4}\ge\dfrac{3}{2}\left(a^3+b^3+c^3\right)\)

\(\Rightarrow M\ge\dfrac{a^4+b^4+c^4}{2}+\dfrac{5}{4}\left(a^3+b^3+c^3\right)-\dfrac{3}{4}\)

Mặt khác ta có:

\(\dfrac{1}{2}\left(a^4+b^4+c^4\right)\ge\dfrac{1}{6}\left(a^2+b^2+c^2\right)^2=\dfrac{3}{2}\)

\(\left(a^3+a^3+1\right)+\left(b^3+b^3+1\right)+\left(c^3+c^3+1\right)\ge3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge9\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{15}{4}-\dfrac{3}{4}=...\)

18 tháng 1 2018

(a^2+b^2+c^2) x 2 = 2 x (a^4+b^4+c^4)

suy ra: (a+b+c)^2 x 2 = (a+b+c)^4 x 2

Mà a+b+c= 0(gt)

suy ra: 0^2 x 2=0^4 x 2

0 = 0

=)))

7 tháng 3 2016

Câu này làm thế nào nhỉ.Mình cũng đang thắc mắc.Gần thi huyện rồi

8 tháng 3 2016

28 nhé bạn