K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

+) Ta có : \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow2\left(ab+bc+ca\right)=-2016\)

\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-2013\right)^2\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=2013^2\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=2013^2\)( Do \(a+b+c=0\) )

+) Lại có : \(a^2+b^2+c^2=2016\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=2016^2\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2016^2\)

\(\Rightarrow a^4+b^4+c^4=2016^2-2.2013^2=-4040082\)

Hay : \(A=-4040082\)

Vậy \(A=-4040082\) với a,b,c thỏa mãn đề.

6 tháng 1 2017

a)Ta có: ab+ac+bc=-7                        (ab+ac+bc)^2=49

nên

(ab)^2+(bc)^2+(ac)^2=49

nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98

b) (x^2+y^2+z^2)/(a^2+b^2+c^2)= 
=x^2/a^2+y^2/b^2+z^2/c^2 <=> 
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+ 
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+ 
+(b^2/c^2)z^2+(c^2/a^2)x^2+ 
+(c^2/b^2)y^2+z^2 <=> 
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+ 
+[(a^2+b^2)/c^2]z^2 = 0 (*) 
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2; 
và C=[(a^2+b^2)/c^2]z^2 
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm 
Từ (*) ta có A+B+C=0 
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0 
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0 
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0 
Vậy x^2011+y^2011+z^2011=0 
Và x^2008+y^2008+z^2008=0.

Ta có : \(a^2+b^2+c^2=2016\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=2016^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=2016^2\)

\(\Leftrightarrow a^4+b^4+c^4=2016^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)\)

Lại có : \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow2016+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=-2016\)

\(\Leftrightarrow ab+bc+ac=-1008\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=\left(-1008\right)^2\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2a^2bc+2ab^2c+2abc^2=1008^2\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=1008^2\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=1008^2\)

Nên : \(A=a^4+b^4+c^4=2016^2-2.1008^2=4064251,587\)

15 tháng 5 2018

bạn làm sai rồi

2016^2 - 2.1008^2 = 2032128

13 tháng 8 2017

1) ta có: A= x^3 -8y^3=> A=(x-2y)(x^2 +2xy+4y^2)=>A=5.(29+2xy)   (vì x-2y=5 và x^2+4y^2=29)     (1)

Mặt khác : x-2y=5(gt)=> (x-2y)^2=25=> x^2-4xy+4y^2=25=>29-4xy=25(vì x^2+4y^2=29)

                                                                                          => xy=1    (2)

Thay (2) vào (1) ta đc: A= 5.(29+2.1)=155

Vậy gt của bt A là 155

2) theo bài ra ta có: a+b+c=0 => a+b=-c=>(a+b)^2=c^2=> a^2 +b^2+2ab=c^2=>c^2-a^2-b^2=2ab

=> \(\left(c^2-a^2-b^2\right)^2=4a^2b^2\)

=>\(c^4+a^4+b^4-2c^2a^2+2a^2b^2-2b^2c^2=4a^2b^2\)

=>\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

=>\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

=> \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\) (đpcm)

26 tháng 8 2016

bằng 0 nha bn

(a+b+c)2=a2+b2+c2+2ac+2bc+2ab

=>02=1+2(ac+bc+ab)

=>ac+bc+ab=-1/2

=>(ac+bc+ab)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab

(ac+bc+ab)2=a2b2+b2c2+a2c2+2abc(a+b+c)

=>(-1/2)2=a2b2+b2c2+a2c2+2abc.0

=>a2b2+b2c2+a2c2=1/4

(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2

(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)

12=a4+b4+c4+2.1/4

1=a4+b4+c4.1/2

a4+b4+c4=1-1/2=1/2

21 tháng 4 2017

Ta có:

\(ab+bc+ca=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\frac{0-2010}{2}=-1005\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\)

\(=\left(-1005\right)^2-2abc.0=1005^2\)

\(\Rightarrow A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=2010^2-1005^2=2.1005^2=2020050\)