K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AB=AC

nên ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

b: Ta có: ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

mà \(\widehat{ABC}=70^0\)

nên \(\widehat{ACB}=70^0\)

Ta có: ΔABC cân tại A

=>\(\widehat{BAC}=180^0-2\cdot\widehat{B}=40^0\)

c: Sửa đề: Chứng minh ΔABI=ΔACI

Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

Do đó: ΔABI=ΔACI

d: Xét tứ giác ABMC có

I là trung điểm chung của AM và BC

=>ABMC là hình bình hành

=>MB=AC và MB//AC

e: Xét tứ giác ANBM có

K là trung điểm chung của AB và MN

=>ANBM là hình bình hành

=>AN//BM và AN=BM

Ta có: AN//BM

AC//BM

AN,AC có điểm chung là A

Do đó: N,A,C thẳng hàng

Ta có: AN=BM

AC=BM

Do đó: AN=AC

mà N,A,C thẳng hàng

nên A là trung điểm của NC

13 tháng 5 2022

A B C K H I

a/ Ta có

\(AB\perp AC\left(gt\right)\)

\(HK\perp AC\left(gt\right)\)

=> AB//HK (cùng vuông góc với AC)

b/ Xét tg AKI có

\(AH\perp HI\) => AH là đường cao của tg AKI

HK=HI (gt) => AH là trung tuyến của tg AKI

=> tg AKI cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)

c/ Ta có

tg AKI cân tại A \(\Rightarrow\widehat{AIK}=\widehat{AKI}\) (góc ở đáy tg cân)

AB//HK (cmt) \(\Rightarrow\widehat{BAK}=\widehat{AKI}\) (góc so le trong)

\(\Rightarrow\widehat{BAK}=\widehat{AIK}\) (cùng bằng góc \(\widehat{AKI}\) )

d/ Xét tg CKI có 

\(CH\perp KI\) => CH là đường cao của tg CKI

HK=HI => CH là trung tuyến của tg CKI

=> tg CKI cân tại C (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)

Xét tg AIC và tg AKC có

tg AKI cân tại A (cmt) => AI=AK

tg CKI cân tại C (cmt) => CI=CK

AC chung

=> tg AIC = tg AKC (c.c.c)

11 tháng 4 2015

a) Ta có : AB vuông góc với AC 
HK vuông góc với AC 
 AB // HK 
b) ΔHAK=ΔHAI(c.g.c)(HA chung; HK = HI; AHKˆ=AHIˆ=900) 
 AK = AI  Tam giác AKI cân tại A 
c) Theo b : AIKˆ=AKIˆ 
Mà BAKˆ=AKIˆ (cặp góc so le trong, AB // HK)
Từ 2 điều trên suy ra : BAKˆ=AIKˆ(=AKIˆ) 
d) Tam giác IAK cân tại A có AH là đường cao ứng với đáy KI nên AH là đường phân giác xuất phát từ đỉnh A của tam giác AKI. 
 KACˆ=IACˆ 
ΔAIC=ΔAKC(c.g.c) (AC chung; AK = AI (theo b); KACˆ=IACˆ(cmt))

1 đúng nhé

26 tháng 4 2016

a) ta có :AB vuông góc AC

  HK vuông góc AC

b) Xét tam giác AKH và tam giác AHI

AH là cạnh chung

H1 = H2

IH=HK (gt)

suy ra 2 tam giác trên bằng nhau

suy ra KA=AI

K^=I^ 

Vì KA=AI mà K = I nên tam giác KAI LÀ tam giác cân . Cân tại A

      

28 tháng 12 2018

a) Xét tam giác(TG) AIC và tam giác EIB:

IA=IE(gt)

góc AIC= góc EIB

IC=IB(gt)

=> TG AIC= TG EIB

b) Do TG AIC = TG EIB

=> góc IAC = góc IEB(2 góc tương ứng)

mà 2 góc này ở vị trí so le trong => AC // BE

c) Xét TG IAD và TG IEK:

IA=IE(gt)

góc IAD = góc IEK(2 góc so le trong)

AD=EK(gt)

=> TG IAD = TG IEK

=> góc AID = góc EIK

mà gócAID+gócDIE=180độ

=> gócEIK+gócDIE=180độ

=> D,I,K thẳng hàng

29 tháng 12 2018

CẢM ƠM BẠN NHA

a: Xét ΔABI vuông tại I và ΔACI vuông tại I có

AI chung

BI=CI

Do đó: ΔABI=ΔACI

b: Ta có: ΔABI=ΔACI

nên AB=AC
hay ΔABC cân tại A

c: Xét tứ giác ABDC có

I là trung điểm của BC

I là trung điểm của AD

Do đó:ABDC là hình bình hành

Suy ra: AB//CD

25 tháng 2 2022

em cảm ơn ạ