K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABI vuông tại I và ΔACI vuông tại I có

AI chung

BI=CI

Do đó: ΔABI=ΔACI

b: Ta có: ΔABI=ΔACI

nên AB=AC
hay ΔABC cân tại A

c: Xét tứ giác ABDC có

I là trung điểm của BC

I là trung điểm của AD

Do đó:ABDC là hình bình hành

Suy ra: AB//CD

25 tháng 2 2022

em cảm ơn ạ

28 tháng 12 2018

a) Xét tam giác(TG) AIC và tam giác EIB:

IA=IE(gt)

góc AIC= góc EIB

IC=IB(gt)

=> TG AIC= TG EIB

b) Do TG AIC = TG EIB

=> góc IAC = góc IEB(2 góc tương ứng)

mà 2 góc này ở vị trí so le trong => AC // BE

c) Xét TG IAD và TG IEK:

IA=IE(gt)

góc IAD = góc IEK(2 góc so le trong)

AD=EK(gt)

=> TG IAD = TG IEK

=> góc AID = góc EIK

mà gócAID+gócDIE=180độ

=> gócEIK+gócDIE=180độ

=> D,I,K thẳng hàng

29 tháng 12 2018

CẢM ƠM BẠN NHA

14 tháng 1 2022

a: Xét ΔAIC và ΔDIB có 

IA=ID

ˆAIC=ˆDIBAIC^=DIB^

IC=IB

Do đó: ΔAIC=ΔDIB

Suy ra: ˆACI=ˆDBIACI^=DBI^

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

a: Xét ΔAIC và ΔDIB có 

IA=ID

\(\widehat{AIC}=\widehat{DIB}\)

IC=IB

Do đó: ΔAIC=ΔDIB

b: Xét tứ giác ABDC có 

I là trung điểm của BC

I là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AC//BD

c: Ta có: AH⊥BC

DK⊥BC

Do đó: AH//DK

Xét ΔAHI vuông tại H và ΔDKI vuông tại K có

IA=ID

\(\widehat{AIH}=\widehat{DIK}\)

Do đó: ΔAHI=ΔDKI

Suy ra; AH=DK

a: Xét ΔABI và ΔACI có

AB=AC
góc BAI=góc CAI

AI chung

=>ΔABI=ΔACI

b: ΔABI=ΔACI

=>góc AIB=góc AIC

c: Xét tứ giác ABEC có

I là trung điểm chung của AE và BC

=>ABEC là hình bình hành

=>BE//AC

12 tháng 12 2021

a: \(\widehat{B}=60^0;\widehat{C}=30^0\)

12 tháng 12 2021

=30 độ

12 tháng 12 2021

a: Xét ΔCIA và ΔDIB có 

IC=ID

\(\widehat{CIA}=\widehat{DIB}\)

IA=IB

Do đó: ΔCIA=ΔDIB

12 tháng 12 2021

sao có mỗi phần a vậy bạn

 

16 tháng 1 2022

undefined

\(\text{a)}\text{Xét }\Delta ABI\text{ và }\Delta ACI\text{ có:}\)

\(AB=AC\left(gt\right)\)

\(BI=CI\text{(I trung điểm BC)}\)

\(AI\text{ chung}\)

\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\text{b)Xét }\Delta AIC\text{ và }\Delta DIB\text{ có:}\)

\(AI=DI\left(gt\right)\)

\(\widehat{AIC}=\widehat{DIB}\text{(đối đỉnh)}\)

\(IC=IB\)

\(\Rightarrow\Delta AIC=\Delta DIB\left(c.g.c\right)\)

\(\Rightarrow\widehat{DIB}=\widehat{ICA}\text{(2 góc tương ứng)}\)

\(\text{mà chúng so le trong}\)

\(\Rightarrow AC=BD\)

\(\text{c)Xét }\Delta IKB\text{ và }\Delta IHC\text{ có:}\)

\(\widehat{IKB}=\widehat{IHC}=90^0\)

\(IB=IC\)

\(\widehat{KIB}=\widehat{CIH}\text{(đối đỉnh)}\)

\(\Rightarrow\Delta IKB=\Delta IHC\left(ch-gn\right)\)

\(\Rightarrow IK=IH\)

\(\text{Hình có chỗ nào bạn ko thấy rõ thì ib riêng cho mik nghe:3}\)