K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

a: Xét ΔAIB và ΔAIE có 

AI chung

\(\widehat{BAI}=\widehat{EAI}\)

AB=AE

Do đó: ΔAIB=ΔAIE

b: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: DB=DE

Ta có: AB=AE

nên A nằm trên đường trung trực của BE(1)

Ta có: DB=DE

nên D nằm trên đường trung trực của BE(2)

Từ (1) và (2) suy ra AD là đường trung trực của BE

hay AD\(\perp\)BE

20 tháng 12 2021

a: Xét ΔABI và ΔACI có 

AB=AC

AI chung

BI=CI

Do đó: ΔABI=ΔACI

20 tháng 12 2021

a: Xét ΔABI và ΔACI có 

AB=AC

AI chung

BI=CI

Do đó: ΔABI=ΔACI

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

b: Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét tứ giác ABEC có

I là trung điểm của AE
I là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB//EC

a: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

b: Xét ΔABI vuông tại A và ΔDBI vuông tại D có

BI chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔABI=ΔDBI

c: Ta có: ΔABI=ΔDBI

nên IA=ID

d: Ta có: ΔABI=ΔDBI

nên \(\widehat{AIB}=\widehat{DIB}\)

hay IB là tia phân giác của góc AID

3 tháng 3 2022

a. Áp dụng định lý pitago, ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{4^2+6^2}=\sqrt{52}=2\sqrt{13}cm\)

b.c.d.Xét tam giác vuông ABI và tam giác vuông DBI, có:

góc ABI = góc DBI ( gt )

AI: cạnh chung

Vậy tam giác vuông ABI = tam giác vuông DBI ( cạnh huyền. góc nhọn )

=> IA = ID ( 2 cạnh tương ứng )

=> góc AIB = góc DIB ( 2 góc tương ứng )

=> IB là tia phân giác góc AID

 

a: Xét ΔABI và ΔADI có

AB=AD
\(\widehat{BAI}=\widehat{DAI}\)

AI chung

Do đó: ΔABI=ΔADI

=>\(\widehat{BIA}=\widehat{DIA}\)

=>IA là phân giác của góc BID

b: Ta có: ΔABI=ΔADI

=>\(\widehat{ABI}=\widehat{ADI}\) và IB=ID

Ta có: \(\widehat{ABI}+\widehat{IBE}=180^0\)(hai góc kề bù)

\(\widehat{ADI}+\widehat{CDI}=180^0\)(hai góc kề bù)

mà \(\widehat{ABI}=\widehat{ADI}\)

nên \(\widehat{IBE}=\widehat{CDI}\)

Xét ΔIBE và ΔIDC có

\(\widehat{IBE}=\widehat{IDC}\)

IB=ID

\(\widehat{BIE}=\widehat{DIC}\)(hai góc đối đỉnh)

Do đó: ΔIBE=ΔIDC

=>BE=DC

Xét ΔAEC có \(\dfrac{AB}{BE}=\dfrac{AD}{DC}\)

nên BD//CE