tìm GTNN và GTLN của biểu thức
\(M=\frac{8x+3}{4x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4x^2+8x+4-\left(4x^2+1\right)}{4x^2+1}=\frac{\left(2x+2\right)^2}{4x^2+1}-1\ge-1\)
\(A_{min}=-1\) khi \(x=-1\)
\(A=\frac{16x^2+4-\left(16x^2-8x+1\right)}{4x^2+1}=4-\frac{\left(4x-1\right)^2}{4x^2+1}\le4\)
\(A_{max}=4\) khi \(x=\frac{1}{4}\)
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)
Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2
\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)
Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)
\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)
\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)
\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)
Đẳng thức xảy ra khi x =0
Tí làm tiếp
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
M=(8x+3)/(4x^2+1)
M = ( - 4x^2 - 1 + 4x^2 + 8x + 4)/(4x^2 +1)
M= -1 + (2x +2)^2/(4x^2 +1) ≥ -1
=> min M = -1 khi x = -1
mặt khác:
M = -1 + (2x +2)^2/(4x^2 +1)
M = 4 - 5 + (2x +2)^2/(4x^2 +1)
M = 4 - ( 20x^2 + 5 - 4x^2 - 8x - 4)/(4x^2 +1)
M = 4 - (16x^2 - 8x +1)/(4x^2 +1)
M = 4 - (4x - 1)^2/(4x^2 +1) ≤ 4
=> max M = 4 khi x = 1/4