Cho N= 1/2^2+1/3^2+1/4^2+........+1/2009^2+1/2010^2
CMR N < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2};\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3};...;\frac{1}{2010^2}=\frac{1}{2010.2010}<\frac{1}{2009.2010}\)
\(\Rightarrow N<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{2009}-\frac{1}{2010}=\frac{1}{1}-\frac{1}{2010}=\frac{2009}{2010}<1\)
=>N<1(đpcm)
1/22<1/1*2=1/1-1/2
1/32<1/2*3=1/2-1/3
1/42<1/3*4=1/3-1/4
1/20102<1/2009*2010=1/2009-1/2010
1/22+1/32+1/42+...+1/20102<1/1-1/2+1/2-1/3+1/3-1/4+...+1/2009-1/2010
1/22+1/32+1/42+...+1/2010<1/1-1/2010<1 (dfcm)
a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1
= 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011
= 2011(1/2+1/3+1/4+...+1/2011)
Ta có: B= 1/2+1/3+1/4+...+1/2011
suy ra A/B= 2011
Xét N :
N = \(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\)
Ta có :
\(\frac{1}{2.2}\)< \(\frac{1}{1.2}\)
\(\frac{1}{3.3}\)< \(\frac{1}{2.3}\)
...
\(\frac{1}{2009.2009}\)<\(\frac{1}{2008.2009}\)
\(\frac{1}{2010.2010}\)<\(\frac{1}{2019.2010}\)
Cộng vế theo vế của các bất đẳng thức trên , ta có :
\(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\) < \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{2008.2009}\)+\(\frac{1}{2019.2010}\)
=> N < 1 - \(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)
=> N < 1 - \(\frac{1}{2010}\)<1
=> N < 1
Ta có: n < 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/2008.2009 + 1/2009.2010
n < 1/1-1/2 + 1/2-1/3 + 1/3-1/4 +...+ 1/2008-1/2009 + 1/2009-1/2010 (công thức)
n < 1/1- (1/2-1/2)- (1/3-1/3)-...- (1/2009-1/2009)-1/2010 (quy tắc dấu ngoặc)
n < 1/1 - 1/2010
n < 2009/2010
Vậy n<2009/2010<1
ta có \(N=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}.\)
ta lại có \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)
đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(\Rightarrow N< A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}< 1\)
hay \(N< 1\left(đpcm\right)\)
Ta có
1/2^2<1/1.2
1/3^2<1/2.3
......
1/2009^2<1/2008.2009
1/2010^2<1/2009.2010
=>1/2^2+1/3^2+...+1/2010^2<1/1.2+1/2.3+....+1/2009.2010
=>N<1/1.2+1/2.3+....+1/2009.2010
=>N<1-1/2010
=>N<2009/2010<1
Vậy N<1
\(N=\) \(\frac{1}{2^2}\) \(+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}+\frac{1}{2009.2010}\)
\(N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\)
\(N< 1-\frac{1}{2010}\)
\(N< \frac{2009}{2010}< 1\)
\(\Rightarrow N< 1\)
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(\Rightarrow N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(\Rightarrow N< 1-\frac{1}{2010}\)
\(\Rightarrow N< 1\left(đpcm\right)\)
Chúc bạn học tốt !!!!
mọi người ơi tl nhanh nhanh nha mk đag rất cần