Cho tam giác ABC nội tiếp (O) trực tâm H ,K là điểm đối xúng với O qua bc .Chứng minh AH=OK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\widehat{BNC}=\widehat{BMC}=90độ\)(gt)
Nên tứ giác BNMC nội tiếp (2 đỉnh N,M cùng BC với 2 góc bằng nhau)
(Câu sau không rõ. Cái gì là tâm đường tròn nội tiếp ΔMNH?)
b) Xét ΔAMN và ΔABC có:
\(\widehat{BAC}\)chung
\(\widehat{AMN}=\widehat{ABC}\)(tứ giác BNMC nội tiếp)
Do đó ΔAMN ~ ΔABC
Nên\(\frac{AM}{AB}=\frac{AN}{AC}\)
hay AM.AC=AN.AB
Ta có \(\widehat{ANH}=\widehat{AMH}=90độ\left(gt\right)\)
Nên \(\widehat{ANH}+\widehat{AMH}=180độ\)
Suy ra tứ giác ANHM nội tiếp
Do đó \(\widehat{NAM}+\widehat{NHM}=180độ\)
Mà \(\widehat{NHM}=\widehat{BHC}\)(đối đỉnh)
\(\widehat{BHC}=\widehat{BLC}\)(tính chất đối xứng trục)
Nên \(\widehat{NAM}+\widehat{BLC}=180độ\)
Suy ra tứ giác ABLC nội tiếp đường tròn (O) (tổng 2 góc đối bằng 180độ)
c) (Câu này hình như bạn ghi sai đề rồi, nếu I là giao điểm AH với AN thì I sẽ trùng với A. Nên mình nghĩ I là giao điểm MN với AH)
Ta có \(\widehat{HDC}=\widehat{HMC}=90độ\left(gt\right)\)
Nên \(\widehat{HDC+}\widehat{HMC}=180độ\)
Do đó tứ giác HMCD nội tiếp
Suy ra \(\widehat{HMD}=\widehat{HCD}\)
Mà \(\widehat{HCD}=\widehat{HMN}\)(tứ giác BMNC nội tiếp)
Nên \(\widehat{HMD}=\widehat{HMN}\)
Vậy MH là phân giác \(\widehat{NMD}\)
Mà MH vuông góc AM (gt)
Nên AM là phân giác ngoài
Do đó \(\frac{IH}{ID}=\frac{AH}{AD}\)
hay IH.AD=AH.ID
a.Ta có :
ˆAFH=ˆADB=90o→ΔAFH∼ΔADB(g.g)
→AFAD=AHAB→AF.AB=AH.AD
Tương tự AH.AD=AE.AC→AF.AB=AE.AC
b.Ta có :
ˆHFA=ˆHEA=ˆHFB=ˆHDB=90o
→AEHF,AEDB,FHDB nội tiếp
→ˆHFE=ˆFAE=ˆHBD=ˆHFD
→FH là phân giác ˆDFE
Mà FA⊥FH→FA là phân giác góc ngoài tại đỉnh F của ΔDEF
→HIHD=FIFD=AIAD
→IH.AD=AI.DH
Gọi M, N lần lượt là chân đường cao hạ từ B,C xuống AC,AB
Ta có \(DH.DA=DB.DC\)(1)
Để chứng minh K là trực tâm tam giác IBC ta chứng minh \(DK.DJ=DB.DC\)hay \(DK.DJ=DH.DA\)
Ta có NC,NA lần lượt là phân giác trong và phân giác ngoài của \(\widehat{MND}\)nên
\(\frac{HK}{HD}=\frac{NK}{ND}=\frac{AK}{AH}\)
\(\Rightarrow AK.HD=AD.HK\)
\(\Leftrightarrow HD\left(AD-DK\right)=AD\left(DK-DH\right)\)
\(\Leftrightarrow2.AD.DH=DK\left(DA+DH\right)\)
\(\Leftrightarrow2.AD.DH=2.DK.DJ\)
\(\Rightarrow AD.DH=DK.DJ\left(2\right)\)
Từ (1) và (2) ta có\(DK.DJ=DH.DA\)
=> K là trực tâm của tam giác IBC
Gọi E là điểm đối xứng với A qua đường thẳng OI. Tia AI cắt (O) tại D khác A. DE giao BC tại F.
Ta thấy \(\Delta\)MIN và \(\Delta\)AIE cân tại I có ^IMN = ^IAE (Vì MN // AE vuông góc OI) => ^MIN = ^AIE => I,N,E thẳng hàng.
=> MN là đường trung bình \(\Delta\)AIE => AE = 2.MN, IE = 2.IN
Ta có: AE // IK (Cùng vuông góc OI) => ^KIE = ^IEA = ^IAE = ^BAE - ^BAD = ^BDx - ^DBC = ^BFD = ^KFE
=> Tứ giác KEIF nội tiếp => ^KEI = ^BFI (1)
Mặt khác: \(\Delta\)DFC ~ \(\Delta\)DCE (g.g) => DC2 = DF.DE => DI2 = DF.DE => \(\Delta\)DFI ~ \(\Delta\)DIE (c.g.c)
=> ^DFI = ^DIE = 2.^IAE = 2.^BFD (Vì ^IAE = ^BFD) => ^KIE = ^BFI (2)
Từ (1) và (2) => ^KIE = ^KEI => \(\Delta\)IKE cân tại K. Từ đó: \(\Delta\)IKE ~ \(\Delta\)AIE (g.g) => IE2 = IK.AE
Dễ thấy MJ là đường trung bình \(\Delta\)AIK => IK = 2.MJ. Kết hợp với AE = 2.MN (cmt)
Suy ra: IE2 = 4.MJ.MN hay AI2 = 4.MJ.MN => 4.MA2 = 4.MJ.MN => MA2 = MJ.MN => \(\Delta\)MJA ~ \(\Delta\)MAN (c.g.c)
=> ^MJA = ^MAN. Tương tự thì ^MJI = ^MIN => ^MJA + ^MJI = ^MAN + ^MIN => ^AJI = 1800 - ^ANI
Lại có: H là trực tâm \(\Delta\)AIN => ^AHI = 1800 - ^ANI. Do đó: ^AHI = ^AJI => Tứ giác AIHJ nội tiếp
=> ^AJH + ^AIH = 1800 <=> ^MJA + ^MJH + 900 - ^IAN = ^MJH + 900 = 1800 => ^MJH = 900
=> JH vuông góc MN. Mà OI cũng vuông góc MN nên JH // OI (đpcm).