Tìm x,y thuộc Z biết
a) 3x(y-1)+y=6
b) 2x+1.3y=12x
HELP ME!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Vì \(x,y\in Z\) nên \(\left(3x+2\right):3R2;R1\)
Mà \(\left(3x+2\right)\left(y-8\right)=12\) nên \(3x+2\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do đó \(3x+2\in\left\{-4;-1;2\right\}\)
\(\Rightarrow x\in\left\{-2;-1;0\right\}\)
Với \(x=-2\Rightarrow\left(-4\right)\left(y-8\right)=12\Rightarrow y-8=-3\Rightarrow y=5\)
Với \(x=-1\Rightarrow\left(-3\right)\left(y-8\right)=12\Rightarrow y-8=-4\Rightarrow y=4\)
Với \(x=0\Rightarrow2\left(y-8\right)=12\Rightarrow y-8=6\Rightarrow y=14\)
Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(-2;5\right);\left(-1;4\right);\left(0;14\right)\)
\(b,\) Vì \(x,y\in Z\) nên \(\left(5x-4\right):5R1;R4\)
Mà \(\left(5x-4\right)\left(y+3\right)=-18\)
\(\Rightarrow5x-4\inƯ\left(-18\right)=\left\{-18;-9;-6;-3;-2;-1;1;2;3;6;9;18\right\}\\ \Rightarrow5x-4\in\left\{-9;1;6\right\}\\ \Rightarrow x\in\left\{-1;1;2\right\}\)
Với \(x=-1\Rightarrow-9\left(y+3\right)=-18\Rightarrow y+3=2\Rightarrow y=-1\)
Với \(x=1\Rightarrow y+3=18\Rightarrow y=15\)
Với \(x=2\Rightarrow6\left(y+3\right)=18\Rightarrow y+3=3\Rightarrow y=0\)
Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(-1;-1\right);\left(1;15\right);\left(2;0\right)\)
a: 3x=7y
=>x/7=y/3=(x-y)/(7-3)=-16/4=-4
=>x=-28; y=-12
b: x/6=y/5
=>x/6=2y/10=(x+2y)/(6+10)=20/16=5/4
=>x=30/4=15/2; y=25/4
c: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2\cdot2+3\cdot\left(-3\right)+5\cdot5}=\dfrac{6}{20}=\dfrac{3}{10}\)
=>x=3/5; y=-9/10; z=3/2
d: x/2=y/3
=>x/8=y/12
y/4=z/5
=>y/12=z/15
=>x/8=y/12=z/15
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
=>x=16; y=24; z=30
\(a,\text{Vì }x,y\in N\Leftrightarrow x+2\ge2;y+3\ge3\\ \Leftrightarrow\left(x+2\right)\left(y+3\right)=6=2\cdot3=3\cdot2\\ \Leftrightarrow\left\{{}\begin{matrix}x+2=2\\y+3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(0;0\right)\)
\(b,\Leftrightarrow\left(x-3\right)\left(y+1\right)=7\cdot1=1\cdot7\\ \left\{{}\begin{matrix}x-3=7\\y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=0\end{matrix}\right.\\ \left\{{}\begin{matrix}x-3=1\\y+1=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(10;0\right);\left(4;6\right)\right\}\)
Giải:
a) \(\dfrac{-5}{8}=\dfrac{x}{16}\)
\(\Rightarrow x=\dfrac{16.-5}{8}=-10\)
\(\dfrac{3x}{9}=\dfrac{2}{6}\)
\(\Rightarrow3x=\dfrac{2.9}{6}=3\)
\(\Rightarrow x=1\)
b) \(\dfrac{x+3}{15}=\dfrac{1}{3}\)
\(\Rightarrow x+3=\dfrac{1.15}{3}=5\)
\(\Rightarrow x=2\)
\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
\(\Rightarrow2x+1=\dfrac{6.7}{2}=21\)
\(\Rightarrow x=10\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow\dfrac{4}{x-6}=\dfrac{-12}{18}\)
\(\Rightarrow x-6=\dfrac{18.4}{-12}=-6\)
\(\Rightarrow x=0\)
\(\Rightarrow\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow y=\dfrac{-12.24}{18}=-16\)
\(\dfrac{3-x}{-12}=\dfrac{16}{y+1}=\dfrac{192}{-72}\)
\(\Rightarrow\dfrac{3-x}{-12}=\dfrac{192}{-72}\)
\(\Rightarrow3-x=\dfrac{192.-12}{-72}=32\)
\(\Rightarrow x=-29\)
\(\Rightarrow\dfrac{16}{y+1}=\dfrac{192}{-72}\)
\(\Rightarrow y+1=\dfrac{16.-72}{192}=-6\)
d) \(\dfrac{-2}{3}< \dfrac{x}{5}< \dfrac{-1}{6}\)
\(\Rightarrow\dfrac{-20}{30}< \dfrac{6x}{30}< \dfrac{-5}{30}\)
\(\Rightarrow6x\in\left\{-18;-12;-6\right\}\)
\(\Rightarrow x\in\left\{-3;-2;-1\right\}\)
\(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
\(\Rightarrow\dfrac{-8}{40}\le\dfrac{5x}{40}\le\dfrac{10}{40}\)
\(\Rightarrow5x\in\left\{-5;0;5;10\right\}\)
\(\Rightarrow x\in\left\{-1;0;1;2\right\}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
\(\Rightarrow\dfrac{x+46}{20}=x+\dfrac{2}{5}\)
\(\Rightarrow\dfrac{x+46}{20}=\dfrac{5x+2}{5}\)
\(\Rightarrow5.\left(x+46\right)=20.\left(5x+2\right)\)
\(\Rightarrow5x+230=100x+40\)
\(\Rightarrow5x-100x=40-230\)
\(\Rightarrow-95x=-190\)
\(\Rightarrow x=-190:-95\)
\(\Rightarrow x=2\)
\(y\dfrac{5}{y}=\dfrac{86}{y}\)
\(\Rightarrow y+\dfrac{5}{y}=\dfrac{86}{y}\)
\(\Rightarrow\dfrac{y^2+5}{y}=\dfrac{86}{y}\)
\(\Rightarrow y^2+5=86\)
\(\Rightarrow y^2=86-5\)
\(\Rightarrow y^2=81\)
\(\Rightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\)
Chúc bạn học tốt!
a. Theo t/c của dãy tỉ số bằng nhau ta có:
x+y+z/2+3+5=40/10=4
=>x=4.2=8
=>y=4.3=12
=>z=4.5=20
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-3y+2z}{2-3\cdot3+2\cdot5}=\dfrac{9}{-15}=\dfrac{-3}{5}\)
Do đó: \(\left\{{}\begin{matrix}x=-\dfrac{6}{5}\\y=\dfrac{-9}{5}\\z=-3\end{matrix}\right.\)
b0 Ta có: \(|x-y|\ge0\forall x,y\)
\(\left(x-16\right)^6\ge0\forall x\)
\(\Rightarrow|x-y|+\left(x-16\right)^6\ge0\forall x,y\)
Mà theo đầu bài \(|x-y|+\left(x-16\right)^6\le0\)
\(\Leftrightarrow|x-y|+\left(x-16\right)^6=0\)
\(\Leftrightarrow\hept{\begin{cases}|x-y|=0\\\left(x-16\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x-16=0\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}y=16\\x=16\end{cases}}\)
VẬY x=16 và y=16
Cảm ơn Lê Tài Bảo Châu nhá!!!!!!
Nhưng bạn làm nốt hộ mik nhé!!!
Ai giúp mình với
Toán lớp 6: Phương trình nghiệm nguyên
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.4^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.2^{2x}\)
\(\Rightarrow\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+1=2x\\y=x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\text{Vì y = x}\Rightarrow y=1\end{cases}}\)