K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Hình thì bạn tự vẽ nhé

a) Xét tam giác AHC và tam giác BDC có:

góc C chung

góc AHC = góc BDC (=90 độ) 

=> Tam giác AHC đồng dạng với tam giác BDC (g.g)

b) Xét tam giác ADE và tam giác BHE có: 

góc ADE  = góc BHE (=90 độ)

góc AED = góc BEH ( vì 2 góc này đối đỉnh)

=> Tam giác ADE đồng dạng với tam giác BHE (g.g)

=> AE/BE=DE/HE => AE.HE=BE.DE (đpcm)

a: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có

góc EHB=góc DHC

=>ΔHEB đồng dạng với ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

b: Xét ΔBAC có

BD,CE là đường cao

BD cắt CE tại H

=>H là trực tâm

=>AH vuông góc BC tại F

Xét ΔBFH và ΔBDC có

góc BFH=góc BDC

góc FBH chung

=>ΔBFH đồng dạng với ΔBDC

=>BF/BD=BH/BC

=>BF*BC=BD*BH

17 tháng 5 2023

mình cần gâps huhu

 

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD/AB=AE/AC

=>ΔADE đồng dạng vơi ΔABC

b: Xet ΔHEB vuông tại E và ΔHDC vuông tại D co

góc EHB=góc DHC

=>ΔHEB đồng dạng vơi ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

Xét tứ giác BHCK co

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>H,M,K thẳng hàng

ΔAED đồg dạng với ΔACB

=>góc AED=góc ACB

d: Xét ΔBEC vuông tại E và ΔBOA vuông tại O có

góc EBC chung

=>ΔBEC đồng dạng với ΔBOA

=>BE/BO=BC/BA

=>BE*BA=BO*BC

Xét ΔCDB vuông tại D và ΔCOA vuông tại O có

góc OCA chung

=>ΔCDB đồng dạng với ΔCOA

=>CD/CO=CB/CA

=>CO*CB=CD*CA

=>BE*BA+CD*CA=BC^2

a) Xét ΔKHB vuông tại K và ΔIHC vuông tại I có 

\(\widehat{KHB}=\widehat{IHC}\)(hai góc đối đỉnh)

Do đó: ΔKHB\(\sim\)ΔIHC(g-g)

Đề sai rồi bạn

7 tháng 4 2018

mk chỉnh lại đề:  kẻ các đường cao AH và BK cắt nhau tại I

a)  Xét   \(\Delta BKC\) và       \(\Delta AHC\)có:

\(\widehat{BKC}=\widehat{AHC}=90^0\)

\(\widehat{C}\)  chung

suy ra:    \(\Delta BKC~\Delta AHC\)

b)   \(\Delta BKC~\Delta AHC\)

\(\Rightarrow\)\(\frac{KC}{HC}=\frac{BC}{AC}\)

\(\Rightarrow\)\(\frac{KC}{BC}=\frac{HC}{AC}\)

Xét  \(\Delta HKC\)và   \(\Delta ABC\) có:

\(\frac{KC}{BC}=\frac{HC}{AC}\) (cmt)

\(\widehat{C}\)   chung

suy ra:   \(\Delta HKC~\Delta ABC\) (c.g.c)

8 tháng 4 2018

cau cuoi nua bn