K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

mk chỉnh lại đề:  kẻ các đường cao AH và BK cắt nhau tại I

a)  Xét   \(\Delta BKC\) và       \(\Delta AHC\)có:

\(\widehat{BKC}=\widehat{AHC}=90^0\)

\(\widehat{C}\)  chung

suy ra:    \(\Delta BKC~\Delta AHC\)

b)   \(\Delta BKC~\Delta AHC\)

\(\Rightarrow\)\(\frac{KC}{HC}=\frac{BC}{AC}\)

\(\Rightarrow\)\(\frac{KC}{BC}=\frac{HC}{AC}\)

Xét  \(\Delta HKC\)và   \(\Delta ABC\) có:

\(\frac{KC}{BC}=\frac{HC}{AC}\) (cmt)

\(\widehat{C}\)   chung

suy ra:   \(\Delta HKC~\Delta ABC\) (c.g.c)

8 tháng 4 2018

cau cuoi nua bn

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AE/AB=AF/AC và AE*AC=AB*AF

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ACB

c; góc AFH=góc AEH=90 độ

=>AFHE nội tiếp (I)

=>IF=IE

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp (M)

=>MF=ME

=>MI là trung trực của EF

=>MI vuông góc EF

19 tháng 2 2021

a) Vì \(\Delta ABC\) cân tại A, có AH là đường cao

\(\Rightarrow AH\) vừa là đường cao, vừa là đường phân giác của \(\Delta ABC\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}=\dfrac{\widehat{A}}{2}\)

Xét \(\Delta ABH\) và \(\Delta ACH\) có:

\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)

\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(AH\): cạnh chung

\(\Rightarrow\Delta ABH=\Delta ACH\left(ch-gn\right)\)

19 tháng 2 2021

thật ra chủ yếu là mk muốn tìm lời giải của phần c cơ phần a,b mk lm đc lâu r

 

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc A chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC

=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

 

26 tháng 1 2022

a) Xét \(\Delta\) DHM và \(\Delta\) DMC:

\(\widehat{MDH}chung.\) 

\(\widehat{DHM}=\widehat{DMC}\left(=90^o\right).\)

\(\Rightarrow\) \(\Delta\) DHM \(\sim\) \(\Delta\) DMC \(\left(g-g\right).\)

b) Xét \(\Delta\) ABC cân tại A: AM là đường cao (gt).

\(\Rightarrow\) AM là trung tuyến (Tính chất tam giác cân).

\(\Rightarrow\) M là trung điểm của BC.

Ta có: \(\Delta\) DHM \(\sim\) \(\Delta\) DMC \(\left(cmt\right).\)

\(\Rightarrow\dfrac{DH}{DM}=\dfrac{HM}{MC}\) (2 cạnh tương ứng tỉ lệ).

\(\Rightarrow DH.MC=DM.HM.\)

Mà \(MC=BM\) (M là trung điểm của BC); \(DM=AD\) (D là trung điểm của AM).

\(\Rightarrow DH.BM=AD.HM.\)

c) Ta có: \(\widehat{HDM}+\widehat{DMH}=90^o\) (Tam giác DHM vuông tại H).

              \(\widehat{HMC}+\widehat{DMH}=90^o\left(=\widehat{DMC}\right).\)

\(\Rightarrow\) \(\widehat{HDM}=\widehat{HMC}.\)

Mà \(\widehat{ADH}+\widehat{HDM}=180^o;\widehat{BMH}+\widehat{HMC}=180^o.\\ \Rightarrow\widehat{ADH}=\widehat{BMH}.\)

Xét \(\Delta\) ADH và \(\Delta\) BMH:

\(\widehat{ADH}=\widehat{BMH}\left(cmt\right).\\ \dfrac{AD}{BM}=\dfrac{DH}{MH}\left(DH.BM=AD.HM\right).\)

\(\Rightarrow\Delta\) ADH \(\sim\Delta\) BMH \(\left(g-g\right).\)

\(\Rightarrow\widehat{DAH}=\widehat{MBH}\) (2 góc tương ứng).

Xét \(\Delta\) AMN và \(\Delta\) BHN:

\(\widehat{N}chung.\)

\(\widehat{MAN}=\widehat{HBN}\left(\widehat{DAH}=\widehat{MBH}\right).\)

\(\Rightarrow\Delta\) AMN \(\sim\) \(\Delta\) BHN \(\left(g-g\right).\)

\(\Rightarrow\widehat{AMN}=\widehat{BHN}=90^o\) (2 góc tương ứng).

Xét \(\Delta\) ABN: 

AM là đường cao \(\left(AM\perp BC\right).\)

BH là đường cao \(\left(\widehat{BHN}=90^o\right).\)

AM cắt BH tại E (gt).

\(\Rightarrow\) E là trực tâm.

\(\Rightarrow\) EN là đường cao.

\(\Rightarrow EN\perp AB.\)

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC
Xét ΔAHB vuông tại H và ΔHKA vuông tại K có

góc HAB=góc KHA

=>ΔAHB đồng dạng với ΔHKA

b: ΔAHB đồng dạng với ΔHKA

=>AH/HK=AB/HA

=>AH^2=HK*AB

c: Xét ΔCAM có KI//AM

nên KI/AM=CI/CM

Xét ΔCMB có IH//MB

nên IH/MB=CI/CM

=>KI/AM=IH/MB

mà AM=MB

nên KI=IH

=>I là trung điểm của KH

25 tháng 10 2021

undefinedundefined

đây là đáp án bạn nhé

26 tháng 10 2021

undefined

ảnh kia của mình nó bị thiếu nhé