K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2020

sửa lại đề :

Cho tam giác abc nhọn (AB<AC). Kẻ các đường cao BD, CE cắt nhau tại H.

CM: a) Tam giác ABD đồng dạng tam giác ACE

b) tam giác AEH đồng dạng tam giác CEB

A B C E D H

a,Xét \(\Delta ABD\)và \(\Delta ACE\)có :

\(\widehat{ADB}=\widehat{AEC}=90^0\)

\(\widehat{BAC}\)chung

\(\Rightarrow\Delta ABD~\Delta ACE\left(g.g\right)\)

17 tháng 5 2023

mình cần gâps huhu

 

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d) ...
Đọc tiếp

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân giác của góc DEF                                                                          e) BF.BA + CE.CA=BC2                                                                                                                       f) HD/AD + HE/BE + HF/CF = 1                                                                                                                   g) góc IEG = 90

0
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d) ...
Đọc tiếp

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân giác của góc DEF                                                                          e) BF.BA + CE.CA=BC2                                                                                                                       f) HD/AD + HE/BE + HF/CF = 1                                                                                                                   g) góc IEj = 90

0
23 tháng 4 2018

Hình thì bạn tự vẽ nhé

a) Xét tam giác AHC và tam giác BDC có:

góc C chung

góc AHC = góc BDC (=90 độ) 

=> Tam giác AHC đồng dạng với tam giác BDC (g.g)

b) Xét tam giác ADE và tam giác BHE có: 

góc ADE  = góc BHE (=90 độ)

góc AED = góc BEH ( vì 2 góc này đối đỉnh)

=> Tam giác ADE đồng dạng với tam giác BHE (g.g)

=> AE/BE=DE/HE => AE.HE=BE.DE (đpcm)

16 tháng 6 2019

Xét ΔABD và ΔAEG, ta có:

BD AC (BD là đường cao)

EG AC (EG là đường cao)

=> BD // EG

Theo định lý Talet, ta có:  A E A B = A G A D = E G B D

=> ΔAEG ~ ΔABD (c - c - c) nên (1) đúng.

Tương tự ta cũng chứng minh được ΔADF ~ ΔACE nên (2) đúng

Dễ thấy (3) sai vì  A E A B ≠ A C A C

Vậy có hai cặp tam giác đồng dạng trong các cặp đã nêu.

Đáp án: C

loading...  loading...  

Hình Tự Vẽ

 Xét \(\Delta AEC\)và \(\Delta ADB\)có :\(\widehat{A}\)chung :\(\widehat{E}\)=\(\widehat{D}\)\(\Rightarrow\)\(\Delta AEC\)\(\approx\)\(\Delta ADB\)\(\Rightarrow\)\(\widehat{ABD}\)=\(\widehat{ACE}\)

Xét \(\Delta HDC\)và \(\Delta HEB\)có : \(\widehat{D}\)=\(\widehat{C}\)\(\widehat{HCD}\)=\(\widehat{HBE}\)\(\Rightarrow\)\(\Delta HDC\)\(\approx\)\(\Delta HEB\)\(\Rightarrow\)\(\frac{HB}{HC}\)\(\frac{HE}{HD}\)\(\Rightarrow\)HB.HD=HC.HE

9 tháng 8 2020

a) Xét tam giác ADB và tam giác AEC có:

Chung DAB; 2 góc vuông ADB=AEC=90 độ (có 2 đường cao BD, CE lần lượt hạ từ B; C xuống)

=> Đồng dạng theo TH gg

b; c) Có: BEC=BDC=90 độ

=> Tứ giác BCDE nội tiếp 

=> góc HDE= góc ECB (tính chất)

=> tam giác HDE đồng dạng tam giác HCB (gg)

=> \(\frac{HD}{HE}=\frac{HC}{HB}\)

=> \(HD.HB=HC.HE\)(ĐPCM)

d) Xét tứ giác ADHE có: góc ADH=góc AEH=90 độ 

=> góc ADH + góc AEH=90+90=180 độ 

=> Tứ giác ADHE nội tiếp 

=> góc AHD=góc AED (tính chất) (*)

Có tứ giác BCDE nội tiếp (cmt) => góc AED=góc ACB (tính chất) (**)

Từ (*) và (**) => góc ACB=góc AHD.

=> Tam giác DHA đồng dạng tam giác DCB (gg) khi có \(\hept{\begin{cases}ACB=AHD\left(cmt\right)\\ADH=BCD=90\end{cases}}\)

=> \(\frac{DH}{DA}=\frac{DC}{DB}\)

=> \(DH.DB=DA.DC\)(ĐPCM)

e) Đề bài sai nhé (CM đồng dạng chứ ko phải là CM bằng nhau)

Có: góc AED=góc ACB (cmt)

Và có chung góc DAE

=> Tam giác ADE đồng dạng tam giác ACB (gg)

=> ĐPCM