K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

Ta có : 

\(M=4+4^2+4^3+...+4^{2016}\)

+) Chứng minh \(M⋮5\)

\(M=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2015}+4^{2016}\right)\)

\(M=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{2015}\left(1+4\right)\)

\(M=4.5+4^3.5+...+4^{2015}.5\)

\(M=5\left(4+4^3+...+4^{2015}\right)⋮5\)

+) Chứng minh \(M⋮21\)

\(M=\left(4+4^2+4^3\right)+...+\left(4^{2014}+4^{2015}+4^{2016}\right)\)

\(M=4\left(1+4+16\right)+...+4^{2014}\left(1+4+16\right)\)

\(M=4.21+...+4^{2014}.21\)

\(M=21\left(4+...+4^{2014}\right)⋮21\)

Từ hai phần chứng minh ta suy ra \(M⋮105\) ( vì cùng chia hết cho \(5\) và \(21\) nên chia hết cho \(5.21=105\) ) 

Vậy \(M⋮105\)

Chúc bạn học tốt ~ 

21 tháng 4 2018

giúp mình nha

26 tháng 1 2022

tk

undefined

26 tháng 1 2022

\(A=4+4^2+4^3+...+4^{81}=4\left(1+4+4^2\right)+...+4^{79}\left(1+4+4^2\right)\)

\(=21\left(4+...+4^{79}\right)⋮21\)vậy ta có đpcm 

11 tháng 11 2021

\(A=\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)

\(=21\left(1+...+4^{57}\right)⋮7\)

11 tháng 11 2021

cứ tổng của 3 số liên tiếp được 1 số chia hết cho 7
=> (1+4+4^2)+(4^3+4^4+4^5)+.....+(4^57+4^58+4^59)(20 cặp số)
=> 21+ 4^3(1+4+4^2)+...+4^57(1+4+4^2)
......
Vì 21 chia hết cho 7=> 21.(........) chia hết cho 7=> A chia hết cho 7
đpcm

22 tháng 12 2023

Số số hạng của B:

2023 - 1 + 1 = 2023 (số)

Do 2023 chia 2 dư 1 nên ta có thể nhóm các số hạng của B thành từng nhóm mà mỗi nhóm có 2 số hạng, còn dư 1 số như sau:

B = 4 + (4² + 4³) + (4⁴ + 4⁵) + ... + (4²⁰²² + 4²⁰²³)

= 4 + 4².(1 + 4) + 4⁴.(1 + 4) + ... + 4²⁰²².(1 + 4)

= 4 + 4².5 + 4⁴.5 + ... + 4²⁰²².5

= 4 + 5.(4² + 4⁴ + ... + 4²⁰²²)

Do 5.(4² + 4⁴ + ... + 4²⁰²²) ⋮ 5

⇒ B = 4 + 5.(4² + 4⁴ + ... + 4²⁰²²) chia 5 dư 4

Vậy B không chia hết cho 5

26 tháng 12 2023

Số số hạng của B:

2023 - 1 + 1 = 2023 (số)

Do 2023 chia 2 dư 1 nên ta có thể nhóm các số hạng của B thành từng nhóm mà mỗi nhóm có 2 số hạng, còn dư 1 số như sau:

B = 4 + (4² + 4³) + (4⁴ + 4⁵) + ... + (4²⁰²² + 4²⁰²³)

= 4 + 4².(1 + 4) + 4⁴.(1 + 4) + ... + 4²⁰²².(1 + 4)

= 4 + 4².5 + 4⁴.5 + ... + 4²⁰²².5

= 4 + 5.(4² + 4⁴ + ... + 4²⁰²²)

Do 5.(4² + 4⁴ + ... + 4²⁰²²) ⋮ 5

⇒ B = 4 + 5.(4² + 4⁴ + ... + 4²⁰²²) chia 5 dư 4

Vậy B không chia hết cho 5

26 tháng 12 2023

Bạn đăng câu hỏi xong bạn tự làm luôn rồi?

31 tháng 10 2023

Đặt \(A=4+4^2+4^3+...+4^{89}+4^{90}\)

Ta có: \(A=\left(4+4^2+4^3\right)+...+\left(4^{88}+4^{89}+4^{90}\right)\)

\(A=84+...+4^{87}.\left(4+4^2+4^3\right)\)

\(A=84+...+4^{87}.84\)

\(A=84.\left(1+...+4^{87}\right)\)

Vì \(84⋮21\) nên \(84.\left(1+...+4^{87}\right)⋮21\)

Vậy \(A⋮21\)

\(#\)  Hallowen vui vẻ 🎃

a:Số số hạng thỏa mãn là (124-106):2+1=18:2+1=10 số

b: Số số hạng thỏa mãn là (125-105):5+1=5(số)

2 tháng 8 2023

a, Số tự nhiên m nhỏ nhất thoả mãn 106, số tự nhiên m lớn nhất thoả mãn là 124

Số các số tự nhiên m thoả mãn:

(124 - 108):2 + 1 = 10 (số)

b, Số tự nhiên m nhỏ nhất thoả mãn: 105

Số tự nhiên m lớn nhất thoả mãn: 125

Số các số tự nhiên m thoả mãn: (125-105):5 + 1 = 5 (số)

11 tháng 11 2021

\(b,A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...\left(4^{57}+4^{58}+4^{59}\right)\\ A=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\\ A=\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\\ A=21\left(1+4^3+...+4^{57}\right)⋮7\)

11 tháng 11 2021

a: \(\Leftrightarrow2x+1\in\left\{1;3\right\}\)

hay \(x\in\left\{0;1\right\}\)

21 tháng 11 2019

D = 1 + 4 + 4 2 + 4 3 + . . . + 4 58 + 4 59

=  1 + 4 + 4 2 +  4 3 + 4 4 + 4 5 + ... +  4 57 + 4 58 + 4 59

=  1 + 4 + 4 2 +  4 3 . 1 + 4 + 4 2 + ... +  4 57 . 1 + 4 + 4 2

=  21 + 21 . 4 3 + . . . + 21 . 4 57 ⋮ 21