Do a,n là số nguyên dương thỏa mãn \(a=2+2\sqrt{28n^2+1}\),. Chứng minh a là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{28n^2+1}=k\)
\(A=2k+2=4\left(\frac{k+1}{2}\right)\)
\(k^2=28n^2+1\)
\(k^2-1=28n^2\)
\(\frac{k^2-1}{28}=n^2\)
Suy ra\(k^2-1\)chia hết cho 7 vì tử nguyên mẫu nguyên mà thương cũng nguyên nên tử chia hết cho mẫu mà 28 chia hết cho 7
\(k^2\equiv1\left(mod7\right)\)
\(k\equiv1\)(mod7)
k-1 chia hết cho 7
Có \(n^2=\frac{k^2-1}{28}=\left(\frac{k-1}{14}\right)\left(\frac{k+1}{2}\right)\)
2 số trên nguyên tố cùng nhau
mà tích là số chính phương nên 2 số trên đều là số chính phương
(k+1)/2 chính phương
\(A=4\left(\frac{k+1}{2}\right)\)tích 2 số cp nên a cp
Đặt \(M=2+2\sqrt{12n^2+1}\)
Để M là số nguyên thì 12n2 + 1 là số chính phương lẻ
Đặt 12n2 + 1 = (2k -1)2 (k \(\in\) N)
<=> 12n2 + 1 = 4k2 - 4k +1
<=> 12n2 = 4k2 - 4k
<=> 3n2 = k(k - 1)
=> k(k - 1) chia hết cho 3 => k chia hết cho 3 hoặc k - 1 chia hết cho 3
TH1 : k ⋮ 3 => n2 =(\(\frac{k}{3}\)).(k - 1) Mà (\(\frac{k}{3}\) ; k-1 )= 1 nên đặt \(\frac{k}{3}\) = x2 => k = 3x2
và đặt k - 1 = y2 => k = y2 +1
=> 3x2 = y2 + 1 = 2 ( mod 3)
Vô lý vì 1 số chính phương chia cho 3 có số dư là 0 hoặc 1
TH2 : k - 1 ⋮ 3: ta có :
=> n2 = \(\frac{k\left(k-1\right)}{3}\) Mà ( k; (\(\frac{k-1}{3}\)) =1 nên đặt k = z2
=> M = 2 + 2(2k - 1) = 4k = 4z2 =(2z)2 là 1 số chính phương
=> M là một số chính phương ( đpcm )
\(2+2\sqrt{12n^2+1}\in Z^+\Rightarrow2\sqrt{12n^2+1}\in Z^+\Rightarrow\sqrt{12n^2+1}\in Q\)
\(\Rightarrow\sqrt{12n^2+1}=m\in Z^+\Rightarrow12n^2=m^2-1⋮4\Rightarrow m=2k+1,k\in Z\)
\(12n^2=\left(2k+1\right)^2-1=4k\left(k+1\right)\Rightarrow3n^2=k\left(k+1\right)⋮3\)hoặc \(k+1⋮3\)
TH1: \(k=3q,q\in Z\Rightarrow3n^2=3q\left(q+1\right)\Rightarrow n^2=q\left(q+1\right)\)
Vì \(\left(q,3q+1\right)=1\Rightarrow\hept{\begin{cases}q=a^2\\3q+1=b^2\end{cases}\Rightarrow3q^2+1=b^2}\)
Ta có: \(2+2\sqrt{12n^2+1}=2+2m=2+2\left(2k+1\right)=4+4.3q=4+12q^2=4b^2\)(CMT)
Ta có đpcm
TH2(tương tự):\(k=3q+1\)
\(\dfrac{a}{b}-1=\dfrac{a^2+n^2}{b^2+n^2}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{\left(a-b\right)\left(a+b\right)}{b^2+n^2}\)
TH1: \(a=b\) thì \(ab=a^2\) là SCP
TH2: \(a\ne b\Rightarrow\dfrac{1}{b}=\dfrac{a+b}{b^2+n^2}\)
\(\Rightarrow b^2+n^2=b\left(a+b\right)\Rightarrow ab=n^2\) là SCP
a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014
=> (k – n)(k + n) = 2014 (*)
Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.
Mặt khác (k – n)(k + n) = 2014 là chẵn
Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4
Mà 2014 không chia hết cho 4
Suy ra đẳng thức (*) không thể xảy ra.
Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương
b) Với 2 số a, b dương:
Xét: a2 + b2 – ab ≤ 1
<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)
<=> a3 + b3 ≤ a + b
<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)
<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6
<=> 2a3b3 ≤ ab5 + a5b
<=> ab(a4 – 2a2b2 + b4) ≥ 0
<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .
Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5