K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

Mình cx đg cần câu trả lời của bài này.

28 tháng 4 2018

ai giải đc bài này ko ???

a: Xét ΔABD vuông tại B và ΔAID vuông tại I có

AD chung

\(\widehat{BAD}=\widehat{IAD}\)

Do đó: ΔABD=ΔAID

Suy ra: AB=AI

hay ΔABI cân tại A

b: Xét ΔBDM vuông tại B và ΔIDC vuông tại I có

DB=DI

\(\widehat{BDM}=\widehat{IDC}\)

Do đó: ΔBDM=ΔIDC

Suy ra: DM=DC

c: Ta có: ΔBDM=ΔIDC

nên BM=IC

Ta có: AB+BM=AM

AI+IC=AC

mà AB=AI

và BM=IC

nên AM=AC
hay ΔAMC cân tại A

mà \(\widehat{MAC}=60^0\)

nên ΔAMC đều

a: Xét ΔABD vuông tại B và ΔAID vuông tại I có

AD chung

góc BAD=góc IAD

=>ΔABD=ΔAID

=>AB=AI

b: Xét ΔDBM vuông tại B và ΔDIC vuông tại I có

DB=DI

góc BDM=góc IDC

=>ΔBDM=ΔIDC

=>DM=DC

c: AB+BM=AM

AI+IC=AC

mà AB=AI và MB=IC

nên AM=AC

mà góc MAC=60 độ

nên ΔMAC đều

d: Xét ΔDBM vuông tại B có sin M=BD/DM

=>BD/DM=1/2

=>DM=2BD=2DI

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

27 tháng 12 2021
Giúp mình bài này đi mà :
25 tháng 4 2019

trả lời hô mình cái mn ơi

11 tháng 2 2021

a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)

                                  hay 92 + 122 = BC2

=> BC2 = 81 + 144 = 225 => BC = √225=15cm225=15cm

trong tam giác ABC có: AB < AC < BC

                          => góc C < góc B < góc A (định lý)

b) xét tam giác ABD và tam giác MBD có:

           góc A = góc M = 900 (gt)

                BD chung

          góc B1 = góc B2 (gt)

=> tam giác ABD = tam giác MBD (ch-gn)

c) xét tam giác ADE và tam giác MCD có:

           góc A = góc M = 900 (gt)

               AD = DM (tam giác ABD = tam giác MBD)

            góc ADE = góc MDC (đối đỉnh)

=> tam giác ADE = tam giác MDC (g.c.g)

        => AE = MC (cạnh tương ứng)

ta có: BE = BA + AE

          BC = BM + MC

mà BA = BM (tam giác ở câu a)

      AE = MC (cmt)

=> BE = BC

=> tam giác BEC cân tại E

hok tốt

8 tháng 5 2016

A B C D I M E   

Chứng minh: 

a) - Xét ΔABD và ΔAID có

       Góc ABD = Góc AID (=90 độ)

       AD chung 

       Góc BAD = Góc IAD ( AD là phân giác của góc A)

→ ΔABD = ΔAID (Cạnh huyền - góc nhọn)

    →AB = AI (2 cạnh tương ứng)

        BD = BI (2 cạnh tương ứng)

b) - Xét ΔBMD và ΔICD có:

        Góc MBD = Góc CID (=90 độ)

        BD = BI (CMT)

         Góc BDM = Góc IDC (Đối đỉnh)

→ ΔBMD = ΔICD (g.c.g)

  → DM = DC (2 cạnh tương ứng)

      BM = IC   ( nt )

c) - Ta có:

AB = AI (CMT) và BM = IC (CMT)

→ AB + BM = AI + IC → AM = AC

          → ΔAMC cân tại A                                                                                            (1)

   - Mà: 

ΔABC là tam giác nửa đều (Góc B = 90 độ, Góc C = 30 độ → Góc A =60 độ)                     (2)

Từ (1) và (2) 

→ ΔAMC là tam giác đều

d) - Ta có: MD = MC (CMT)                                                                                               (3)

    - Xét ΔIDC có góc DIC = 90 độ

                           góc ICD = 30 độ

→ ID =  \(\frac{1}{2}\) DC (Trong Δ vuông, cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)         (4)

Từ (3) và (4) 

→ ID = \(\frac{1}{2}\) MD

- Xong rồi nhé

- Mất 1 tiếng ngồi vẽ hình và ngồi nghĩ cho bạn đấy

- GT, KL bạn tự làm

- Hon CM có hơi dài dòng còn có đúng không thì có đấy, chỉ là dài thôi

- Tham khảo, chép xong thì đọc lại xem hiểu không

- Bài này không phải dạng vừa đâu!!

- Có gì cho Hon không nạ

- Chúc bạn học tốt, thi học kì đứng trong TOP 3 nhann

 

9 tháng 5 2016

cảm ơn bn rất nhiều yeu

Bài 2 : Cho tam giác ABC cân tại A. Kẻ BD vuông với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm BD và CE. Chứng minh rằng :Tam giác ADB bằng tam giác AECTam giác ADK bằng tam giác AEKAK là tia phân giác của góc ABài 3 : Cho tam giác ABC  cân ở A  ( góc A <  90 độ ). Vẽ BH  vuông góc với AC ( H thuộc AC), CK vuông góc với AB ( K thuộc AB )      A . CMR : AH = AK      B . Gọi I là giao điểm của BH và CK. CMR : AI là...
Đọc tiếp

Bài 2 : Cho tam giác ABC cân tại A. Kẻ BD vuông với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm BD và CE. Chứng minh rằng :

  1. Tam giác ADB bằng tam giác AEC
  2. Tam giác ADK bằng tam giác AEK
  3. AK là tia phân giác của góc A

Bài 3 : Cho tam giác ABC  cân ở A  ( góc A <  90 độ ). Vẽ BH  vuông góc với AC ( H thuộc AC), CK vuông góc với AB ( K thuộc AB )

      A . CMR : AH = AK

      B . Gọi I là giao điểm của BH và CK. CMR : AI là phân giác của góc A

      C . Gọi M là trung điểm của BC. CMR : AM vuông góc với BC

Bài 4 : Cho tam giác BFC cân tại B. Kẻ FE vuông góc với BC tại E, CA vuông góc với BF tại A.

a)      CMR: Tam giác BEF = tam giác BAC

b)     FE cắt CA tại D. CMR : BD là tia phân giác của góc ABC

c)      Gọi M là trung điểm của FC. CMR: BM vuông góc với AE

0
18 tháng 11 2023

a: Xét ΔAIB và ΔAIC có

AB=AC

\(\widehat{BAI}=\widehat{CAI}\)

AI chung

Do đó: ΔAIB=ΔAIC

b: ΔAIB=ΔAIC

=>IB=IC và \(\widehat{AIB}=\widehat{AIC}\)

mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)

nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)

=>AI\(\perp\)BC

b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AI chung

\(\widehat{HAI}=\widehat{KAI}\)

Do đó: ΔAHI=ΔAKI

=>IH=IK

c: Xét ΔHIN vuông tại H và ΔKIM vuông tại K có

IH=IK

\(\widehat{HIN}=\widehat{KIM}\)

Do đó: ΔHIN=ΔKIM

=>IN=IM và HN=KM

ΔAHI=ΔAKI

=>AH=AK

AH+HN=AN

AK+KM=AM

mà AH=AK và HN=KM

nên AN=AM

=>A nằm trên đường trung trực của NM(1)

IN=IM(cmt)

nên I nằm trên đường trung trực của MN(2)

PN=PM

=>P nằm trên đường trung trực của MN(3)

Từ (1),(2),(3) suy ra A,I,P thẳng hàng

19 tháng 11 2023

cảm ơn bạn Nguyễn Lê Phước Thịnh ạ