Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại B và ΔAID vuông tại I có
AD chung
góc BAD=góc IAD
=>ΔABD=ΔAID
=>AB=AI
b: Xét ΔDBM vuông tại B và ΔDIC vuông tại I có
DB=DI
góc BDM=góc IDC
=>ΔBDM=ΔIDC
=>DM=DC
c: AB+BM=AM
AI+IC=AC
mà AB=AI và MB=IC
nên AM=AC
mà góc MAC=60 độ
nên ΔMAC đều
d: Xét ΔDBM vuông tại B có sin M=BD/DM
=>BD/DM=1/2
=>DM=2BD=2DI
Chứng minh:
a) - Xét ΔABD và ΔAID có
Góc ABD = Góc AID (=90 độ)
AD chung
Góc BAD = Góc IAD ( AD là phân giác của góc A)
→ ΔABD = ΔAID (Cạnh huyền - góc nhọn)
→AB = AI (2 cạnh tương ứng)
BD = BI (2 cạnh tương ứng)
b) - Xét ΔBMD và ΔICD có:
Góc MBD = Góc CID (=90 độ)
BD = BI (CMT)
Góc BDM = Góc IDC (Đối đỉnh)
→ ΔBMD = ΔICD (g.c.g)
→ DM = DC (2 cạnh tương ứng)
BM = IC ( nt )
c) - Ta có:
AB = AI (CMT) và BM = IC (CMT)
→ AB + BM = AI + IC → AM = AC
→ ΔAMC cân tại A (1)
- Mà:
ΔABC là tam giác nửa đều (Góc B = 90 độ, Góc C = 30 độ → Góc A =60 độ) (2)
Từ (1) và (2)
→ ΔAMC là tam giác đều
d) - Ta có: MD = MC (CMT) (3)
- Xét ΔIDC có góc DIC = 90 độ
góc ICD = 30 độ
→ ID = \(\frac{1}{2}\) DC (Trong Δ vuông, cạnh đối diện với góc 30 độ bằng nửa cạnh huyền) (4)
Từ (3) và (4)
→ ID = \(\frac{1}{2}\) MD
- Xong rồi nhé
- Mất 1 tiếng ngồi vẽ hình và ngồi nghĩ cho bạn đấy
- GT, KL bạn tự làm
- Hon CM có hơi dài dòng còn có đúng không thì có đấy, chỉ là dài thôi
- Tham khảo, chép xong thì đọc lại xem hiểu không
- Bài này không phải dạng vừa đâu!!
- Có gì cho Hon không nạ
- Chúc bạn học tốt, thi học kì đứng trong TOP 3 nhann
a: Xét ΔAIK vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIK}=\widehat{DIC}\)
Do đó: ΔAIK=ΔDIC
Suy ra: IK=IC
hay ΔIKC cân tại I
b: Xét ΔBKC có BA/AK=BD/DC
nên AD//KC
c: Ta có: BK=BC
nên B nằm trên đường trung trực của KC(1)
ta có: IK=IC
nên I nằm trên đường trung trực của KC(2)
Ta có: MK=MC
nên M nằm trên đường trung trực của KC(3)
Từ (1), (2)và (3) suy ra B,I,M thẳng hàng
Tự kẻ hình
a) - Vì tam giác ABC vuông tại A (gt)
=> tam giác ABD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác EBD vuông tại E (tc)
- Xét tam giác vuông ABD và tam giác vuông EBD, có:
+ Chung BD
+ góc ABD = góc EBD ( BD là p/giác góc ABC)
=> tam giác vuông ABD = tam giác vuông EBD (cạnh huyền - góc nhọn)
b) - Vì tam giác vuông ABD = tam giác vuông EBD (cmt)
=> AD = ED ( 2 cạnh tương ứng )
- Vì tam giác ABC vuông tại A (gt)
=> tam giác AMD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác ECD vuông tại E (tc)
- Xét tam giác vuông AMD và tam giác vuông ECD, có:
+ AD = ED (cmt)
+ góc ADM = góc EDM (đối đỉnh)
=> tam giác vuông AMD = tam giác vuông ECD (cạnh góc vuông - góc nhọn kề)
=> DM = DC (2 cạnh tương ứng)
c) - Vì tam giác vuông AMD = tam giác vuông ECD (cmt)
=> AM = EC (2 cạnh tương ứng)
- Xét tam giác vuông AMD, có
AD + AM > DM (bất đẳng thức tam giác)
Mà AM = EC (cmt)
=> AD + EC > DM (đpcm)
Bạn chú ý viết cách phần cho và phần yêu cầu.
a/ Xét t/g ABI và t/g ADI có
AI : chung
\(\widehat{BAI}=\widehat{CAI}\) (AI là pg góc BAC)
AB = AD (GT)
=> t/g ABI = t/g ADI (c.g.c)
=> BI = DI (2 cạnh t/ứ)
b/ Có t/g ABI = t/g ADI
=> \(\widehat{ABI}=\widehat{ADI}\)(2 góc t/ứ)
=> \(180^o-\widehat{ABI}=180^o-\widehat{ADI}\)
=> \(\widehat{IBK}=\widehat{IDC}\) Xét t/g BIK và t/g DIC có
\(\widehat{IBK}=\widehat{IDC}\)
IB = DI (cmt)
\(\widehat{BIK}=\widehat{DIC}\)(đối đỉnh)
=> t/g BIK = t/g DIC (g.c.g)
c/ Có t/g BIK = t/g DIC
=> BK = DC (2 cạnh t/ứ) => AB + BK = DC + AD
=> AK = AC
=> t/g AKC cân tại A
Mà AI là pg góc BAC (K thuộc AB)
=> AI đồng thời là đường cao t/g AKC
=> AI ⊥ KC Mà BH ⊥ KC
=> AI // BH
bạn tự vẽ hình nhá
Vì AI là tia phân giác ⇔ \(\widehat{BAI}=\widehat{DAI}=\dfrac{\widehat{BAC}}{2}\)
a) xét Δ ABI và ΔADI, có:
AB=AD
\(\widehat{BAI}=\widehat{DAI}\) (cmt)
AI chung
⇒Δ ABI =Δ ADI (c.g.c)
⇒BI=DI (2 cạnh t/ứng) (đpcm)
b) Do Δ ABI =Δ ADI (cmt) ⇒ \(\widehat{ABI}=\widehat{ADI}\)
Có: \(\widehat{ABI}+\widehat{IBK}\) =1800 (2 góc kề bù)
\(\widehat{ADI}+\widehat{IDC}\) =1800 (2 góc kề bù)
Mà \(\widehat{ABI}=\widehat{ADI}\) (cmt) ⇒ \(\widehat{IBK}=\widehat{IDC}\)
Vì \(\widehat{BIK}\) và \(\widehat{DIC}\) là 2 góc đối đỉnh ⇒ \(\widehat{BIK}\) =\(\widehat{DIC}\)
xét Δ BKI và Δ DCI có:
\(\widehat{IBK}=\widehat{IDC}\) (cmt)
BI=ID (cmt)
\(\widehat{BIK}\) =\(\widehat{DIC}\) (cmt)
⇒Δ BKI = Δ DCI (g.c.g) (đpcm)
c) Từ Δ BKI = Δ DCI (cmt) ⇒ BK=DC
Có AB=AD (gt) ; BK=DC (cmt)
⇔AB+BK=AD+DC
⇔AK=AC
⇒Δ ACK cân tại A.
Mà AI là phân giác của \(\widehat{KAC}\) (gt)
⇒AI vừa là đường phân giác vừa là đường cao của Δ ACK.
⇒AI ⊥ CK. mà BH ⊥ CK (gt)
⇒AI // BH (đpcm)
a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có
AC=AB(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔAEC=ΔADB(cạnh huyền-góc nhọn)
Suy ra: AE=AD(hai cạnh tương ứng)
Xét ΔAED có AE=AD(cmt)
nên ΔAED cân tại A(Định nghĩa tam giác cân)
a: Xét ΔAIB vuông tại A và ΔDIB vuông tại D có
IB chung
\(\widehat{ABI}=\widehat{DBI}\)
Do đó: ΔAIB=ΔDIB
b: Ta có: ΔAIB=ΔDIB
nên AI=DI; BA=BD
Ta có: IA=ID
nên I nằm trên đường trung trực của AD(1)
Ta có: BA=BD
nên B nằm trên dường trung trực của AD(2)
Từ (1) và (2) suy ra BI⊥AD
c:Xét ΔAIE vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIE}=\widehat{DIC}\)
Do đó: ΔAIE=ΔDIC
Suy ra: AE=DC
Xét ΔBEC có
BA/AE=BD/DC
nên AD//EC
d: Xét ΔIEC có IE=IC
nên ΔIEC cân tại I
a: Xét ΔABD vuông tại B và ΔAID vuông tại I có
AD chung
\(\widehat{BAD}=\widehat{IAD}\)
Do đó: ΔABD=ΔAID
Suy ra: AB=AI
hay ΔABI cân tại A
b: Xét ΔBDM vuông tại B và ΔIDC vuông tại I có
DB=DI
\(\widehat{BDM}=\widehat{IDC}\)
Do đó: ΔBDM=ΔIDC
Suy ra: DM=DC
c: Ta có: ΔBDM=ΔIDC
nên BM=IC
Ta có: AB+BM=AM
AI+IC=AC
mà AB=AI
và BM=IC
nên AM=AC
hay ΔAMC cân tại A
mà \(\widehat{MAC}=60^0\)
nên ΔAMC đều