Tim x,y thuoc Z thoa:
x2 + (y-3)2 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 2 Th | x-2| , (x-y+1)^2 =0
| x-2| , (x-y+1)^2 là hai số đối ; lx-2/ nguyên dương => ( x - y + 1 )^2 là số nguyên âm
TH1 | x-2| , (x-y+1)^2 =0
=> x = 2 để /x-2/ = 0
thay vào bên kia ta có : ( 2 - y + 1 ) ^2 = 0 => 2 - y + 1 = 0 => 3 - y = 0 => y = 3
TH2 : Tự xét nha bn
Ta có :
\(\left(x-7\right)\left(y+3\right)< 0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-7< 0\\y+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\y>-3\end{cases}}}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-7>0\\y+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\y< -3\end{cases}}}\)
Vậy hoặc \(x< 7\) và \(y>-3\) hoặc \(x>7\) và \(y< -3\)
Chúc bạn học tốt ~
Ta có: (x-2)(y+12)<0
nên x-2;y+12 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x-2>0\\y+12< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\y< -12\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-2< 0\\y+12>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\y>-12\end{matrix}\right.\)
VÌ \(\left|x\right|\ge0;\left|y\right|\ge0;\left|z\right|\ge0\)NÊN ĐỂ\(\left|x\right|+\left|y\right|+\left|z\right|=0\)\(\Leftrightarrow\hept{\begin{cases}\left|x\right|=0\\\left|y\right|=0\\\left|z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}}\)
x2 \(\ge\) 0 ; (y - 3)2 \(\ge\) 0
Mà đề cho x2 + (y - 3)2 = 0
=> x2 = 0 và (y - 3)2 = 0
=> x = 0 và y = 3