Tính
A = 1/4 + 1/12 + 1/36 + ....... + 1/972 + 1/ 2916
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=14+112+136+...+1972+12916
3A=34+14+112+...+1324+1972
3A−A=(34+14+112+...+1324+1972)−(14+112+136+...+1972+12916)
2A=34−12916
A=10932916
3xB=3x(1/4+1/12+1/36+1/108+1/324+1/972+1/2916+1/8748)
3xB=3/4 + 1/4 +1/12 +1/36 +.........+1/2916
3xB - B= (3/4 + 1/4 + 1/12+1/36 + .........+1/2916) - ( 1/4 +1/12 +1/36 +1/108 + 1/324 + 1/972 + 1/2916 +1/8748 )
2xB =3/4 - 1/8748
2xB =1640/2187
B = 1640/2187 :2
B = 820/2187.
1/2 + 1/4 + 1/8 … + 1/256 + 1/512
= 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + … + 1/128 - 1/256 + 1/256 - 1/512
= 1 - 1/512
= 512/512 - 1/512
= 511/512
Ghi chú: Mình chỉ làm được câu a thôi, xin lỗi bạn nha 😅😅😅
Chúc bạn học tốt.
😁😁😁
\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+...+\frac{1}{972}+\frac{1}{2916}\)
\(3A=\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+...+\frac{1}{324}+\frac{1}{972}\)
\(3A-A=\left(\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+...+\frac{1}{324}+\frac{1}{972}\right)-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+...+\frac{1}{972}+\frac{1}{2916}\right)\)
\(2A=\frac{3}{4}-\frac{1}{2916}\)
\(A=\frac{1093}{2916}\)