Tìm giá trị nhỏ nhất của phân số \(\frac{ab}{a+b}\)( ab là số có hai chữ số )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn tham khảo nha : https://olm.vn/hoi-dap/question/93342.html
\(M=\frac{10a+b}{a+b}=\frac{a+b+9a}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{1+\frac{b}{a}}\)
Để M nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\) nhỏ nhất <=> \(1+\frac{b}{a}\) lớn nhất <=> \(\frac{b}{a}\) lớn nhất. Vì 0< a < 10; 0 \(\le\) b < 10
=> b = 9; a = 1
Vậy M nhỏ nhất = 19/10
\(\frac{ab}{a+b}=\frac{10a+b}{a+b}=\frac{a+b+9a}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{1+\frac{b}{a}}\)
Để \(\frac{ab}{a+b}\) nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\) nhỏ nhất => \(1+\frac{b}{a}\) lớn nhất => \(\frac{b}{a}\) lớn nhất mà a; b là các chữ số
=> b = 9 ; a = 1
Vậy \(\frac{ab}{a+b}\) lớn nhất bằng 19/10
Đặt A = \(\frac{ab}{a+b}=\frac{10a+b}{a+b}=\frac{1a+b+9a}{a+b}=1+\frac{9a}{a+b}=1+\frac{9:a}{(a+b):a}=1+\frac{9}{a+\frac{b}{a}}\)
Để A đạt giá trị nhỏ nhất => \(\frac{9}{a+\frac{b}{a}}\)nhỏ nhất =>\(a+\frac{b}{a}\)lớn nhất => b = 9 , a = 1
Vậy Amin = \(\frac{19}{1+9}=\frac{19}{10}=1,9\)
Giá trị có thuộc N ko bạn
Đặt A= \(\frac{ab}{a+b}=\frac{10a+b}{a+b}=1+\frac{9}{\frac{a+b}{a}}=1+\frac{9}{1+\frac{b}{a}}\)
Để A có giá trị nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\) nhỏ nhất
=> \(1+\frac{b}{a}\) lớn nhất
=> \(\frac{b}{a}\) lớn nhất
=> b lớn nhất, a nhỏ nhất
=> b=9; a=1
Vậy A nhỏ nhất= \(\frac{19}{1+9}=1,9\)