Tìm x thuộc N để \(\frac{n}{n+1}\)+ \(\frac{2}{n+1}\)là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có \(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\) =>\(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)
=>\(\frac{m-1}{2}=\frac{2}{n}\)
=> n(m-1) = 4
=> n và m-1 thuộc Ư(4)={1;2;4}
Ta có bảng sau:
m-1 | 1 | 2 | 4 |
n | 4 | 2 | 1 |
m | 2 | 3 | 5 |
Vậy (m;n)=(2;4),(3;2),(5;1)
Bài 1:
Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)
\(\frac{12}{2n+1}\in N\)
\(\Leftrightarrow12⋮2n+1\)
\(\Rightarrow2n+1\in\text{Ư}\left(12\right)=\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
\(\Rightarrow n\in\left\{0;-1;\frac{1}{2};-\frac{3}{2};1;-2;\frac{3}{2};-\frac{5}{2};\frac{5}{2};-\frac{7}{2};\frac{11}{2};-\frac{13}{2}\right\}\)
Mà :
\(n\in N\Rightarrow n=1\)
2n + 1 thuộc Ư(12) là \([-12;-6;-4;-3;-2;-1;1;2;3;4;6]\)
2n thuộc\(\orbr{-13;-7;-5;-4;-3;-2;0;1;2;3;5;11}\)\(]\)
n thuộc \([-\frac{13}{2};............;\frac{11}{2}\)\(]\)
nói chung chia 2
tìm n nhỏ nhất nha
\(\frac{7}{n+9};\frac{8}{n+10};....;\frac{11}{n+13}\) tối giản
\(\Leftrightarrow\frac{n+9}{7};\frac{n+10}{8};\frac{n+11}{9};....;\frac{n+13}{11}\)tối giản
\(\Leftrightarrow\frac{n+2}{7};\frac{n+2}{8};......;\frac{n+2}{11}\)tối giản
nên n+2 là số nhỏ nhất nguyên tố cùng nhau với 7;8;...;11
nên: n+2 là số nguyên tố lớn nhất lớn hơn 11
=> n+2=13=> n=11
a) Ta có : \(\frac{7}{n+9}=\frac{7}{\left(n+2\right)+7}\).
Để \(\frac{7}{\left(n+2\right)+7}\)tối giản thì 7 và ( n +2 ) nguyên tố cùng nhau
Tương tự ta có : 8 và (n+2) NTCN
9 và(n+2) NTCN
10 và (n+2) NTCN
11 và (n+2) NTCN
Vậy để \(\frac{7}{n+9};\frac{8}{n+10};...\)tối giản thì : n + 2 phải NTCN với 7;8;9;10;11
Mà n nhỏ nhất nên n+2 là SNT nhỏ nhất > 1
Vậy n + 2= 13 => n = 11
\(\frac{n}{n+1}+\frac{2}{n+1}=\frac{n+2}{n+1}\)( n \(\inℕ\))
Để \(\frac{n+2}{n+1}\)là số tự nhiên thì \(\left(n+2\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\)
Mà ( n + 1 ) chia hết cho ( n + 1 ) nên 1 chia hết cho n + 1
\(\Rightarrow n+1\inƯ\left(1\right)\)
Ư(1) = { 1 ; -1 }
\(\Rightarrow n+1\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{0;-2\right\}\)
Mà n \(\inℕ\)nên n = 0
Vậy n = 0
\(\frac{n}{n+1}+\frac{2}{n+1}=\frac{n+2}{n+1}\inℕ\Leftrightarrow n+2⋮n+1\)
\(\Rightarrow n+1+1⋮n+1\)
\(n+1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)\)
\(n\inℕ\Rightarrow n+1\inℕ\)
\(\Rightarrow n+1=1\)
\(\Rightarrow n=0\)