K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

\(\frac{n}{n+1}+\frac{2}{n+1}=\frac{n+2}{n+1}\)( n \(\inℕ\))

Để \(\frac{n+2}{n+1}\)là số tự nhiên thì \(\left(n+2\right)⋮\left(n+1\right)\)

\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\)

Mà ( n + 1 ) chia hết cho ( n + 1 ) nên 1 chia hết cho n + 1

\(\Rightarrow n+1\inƯ\left(1\right)\)

Ư(1) = { 1 ; -1 }

\(\Rightarrow n+1\in\left\{1;-1\right\}\)

\(\Rightarrow n\in\left\{0;-2\right\}\)

Mà n \(\inℕ\)nên n = 0

Vậy n = 0

15 tháng 3 2018

\(\frac{n}{n+1}+\frac{2}{n+1}=\frac{n+2}{n+1}\inℕ\Leftrightarrow n+2⋮n+1\)

\(\Rightarrow n+1+1⋮n+1\)

      \(n+1⋮n+1\)

\(\Rightarrow1⋮n+1\)

\(\Rightarrow n+1\inƯ\left(1\right)\)

     \(n\inℕ\Rightarrow n+1\inℕ\)

\(\Rightarrow n+1=1\)

\(\Rightarrow n=0\)

ghi cho ro rang 1 chut ko hiu de

20 tháng 8 2015

Bài 1:

Ta có \(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)    =>\(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)

                                       =>\(\frac{m-1}{2}=\frac{2}{n}\)

              => n(m-1) = 4

              =>  n và m-1 thuộc Ư(4)={1;2;4}

Ta có bảng sau:

m-1124
n421
m23

5

Vậy (m;n)=(2;4),(3;2),(5;1)

 

Bài 1: 

Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)

\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)

29 tháng 10 2021

 \(\frac{12}{2n+1}\in N\)

\(\Leftrightarrow12⋮2n+1\)

\(\Rightarrow2n+1\in\text{Ư}\left(12\right)=\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

\(\Rightarrow n\in\left\{0;-1;\frac{1}{2};-\frac{3}{2};1;-2;\frac{3}{2};-\frac{5}{2};\frac{5}{2};-\frac{7}{2};\frac{11}{2};-\frac{13}{2}\right\}\)

Mà : 

\(n\in N\Rightarrow n=1\)

29 tháng 10 2021

2n + 1 thuộc Ư(12) là \([-12;-6;-4;-3;-2;-1;1;2;3;4;6]\)

2n thuộc\(\orbr{-13;-7;-5;-4;-3;-2;0;1;2;3;5;11}\)\(]\)

n thuộc \([-\frac{13}{2};............;\frac{11}{2}\)\(]\)

nói chung chia 2

17 tháng 6 2019

tìm n nhỏ nhất nha

\(\frac{7}{n+9};\frac{8}{n+10};....;\frac{11}{n+13}\) tối giản

\(\Leftrightarrow\frac{n+9}{7};\frac{n+10}{8};\frac{n+11}{9};....;\frac{n+13}{11}\)tối giản

\(\Leftrightarrow\frac{n+2}{7};\frac{n+2}{8};......;\frac{n+2}{11}\)tối giản

nên n+2 là số nhỏ nhất nguyên tố cùng nhau với 7;8;...;11

nên: n+2 là số nguyên tố lớn nhất lớn hơn 11

=> n+2=13=> n=11

17 tháng 6 2019

a) Ta có : \(\frac{7}{n+9}=\frac{7}{\left(n+2\right)+7}\)

Để \(\frac{7}{\left(n+2\right)+7}\)tối giản thì 7 và ( n +2 ) nguyên tố cùng nhau

Tương tự ta  có : 8 và (n+2) NTCN

                            9 và(n+2) NTCN

                            10 và (n+2) NTCN

                             11 và (n+2) NTCN

Vậy để \(\frac{7}{n+9};\frac{8}{n+10};...\)tối giản thì : n + 2 phải NTCN với 7;8;9;10;11

Mà n nhỏ nhất nên n+2 là SNT nhỏ nhất > 1

Vậy n + 2= 13 => n = 11