tính số tự nhiên x,( 1/1*2*3 + 1/2*3*4 + ... + 1/8*9*10) * x = 23/45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right)x=\frac{22}{45}\)
=> \(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{8.9.10}\right)=\frac{22}{45}\)
=> \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)=\frac{22}{45}\)
\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{22}{45}:\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{90}\right)x=\frac{44}{45}\)
=> \(\frac{44}{45}x=\frac{44}{45}\)
=> x = 1
Vậy x = 1
1: =>3^x=81
=>x=4
2: =>2^x=8
=>x=3
3: =>x^3=2^3
=>x=2
4: =>x^20-x=0
=>x(x^19-1)=0
=>x=0 hoặc x=1
5: =>2^x=32
=>x=5
6: =>(2x+1)^3=9^3
=>2x+1=9
=>2x=8
=>x=4
7: =>x^3=115
=>\(x=\sqrt[3]{115}\)
8: =>(2x-15)^5-(2x-15)^3=0
=>(2x-15)^3*[(2x-15)^2-1]=0
=>2x-15=0 hoặc (2x-15)^2-1=0
=>2x-15=0 hoặc 2x-15=1 hoặc 2x-15=-1
=>x=15/2 hoặc x=8 hoặc x=7
1. Tìm số tự nhiên x biết:
1) \(3^x.3=243\)
\(3^x=243:3\)
\(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
_____
2) \(7.2^x=56\)
\(2^x=56:7\)
\(2^x=8\)
\(2^x=2^3\)
\(\Rightarrow x=3\)
_____
3) \(x^3=8\)
\(x^3=2^3\)
\(\Rightarrow x=3\)
_____
4) \(x^{20}=x\)
\(x^{20}-x=0\)
\(x\left(x^{19}-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x=1\)
5) \(2^x-15=17\)
\(2^x=17+15\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
_____
6) \(\left(2x+1\right)^3=9.81\)
\(\left(2x+1\right)^3=729=9^3\)
\(\rightarrow2x+1=9\)
\(2x=9-1\)
\(2x=8\)
\(x=8:2\)
\(\Rightarrow x=4\)
_____
7) \(x^6:x^3=125\)
\(x^3=125\)
\(x^3=5^3\)
\(\Rightarrow x=5\)
_____
8) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=7\\x=8\end{matrix}\right.\)
_____
9) \(3^{x+2}-5.3^x=36\)
\(3^x.\left(3^2-5\right)=36\)
\(3^x.\left(9-5\right)=36\)
\(3^x.4=36\)
\(3^x=36:4\)
\(3^x=9\)
\(3^x=3^2\)
\(\Rightarrow x=2\)
_____
10) \(7.4^{x-1}+4^{x+1}=23\)
\(\rightarrow7.4^{x-1}+4^{x-1}.4^2=23\)
\(4^{x-1}.\left(7+4^2\right)=23\)
\(4^{x-1}.\left(7+16\right)=23\)
\(4^{x-1}.23=23\)
\(4^{x-1}=23:23\)
\(4^{x-1}=1\)
\(4^{x-1}=4^1\)
\(\rightarrow x-1=0\)
\(x=0+1\)
\(\Rightarrow x=1\)
Chúc bạn học tốt
1: Để 2/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{2}{x}>0\\x\inƯ\left(2\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2\right\}\)
2: Để 3/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{3}{x}>0\\x\inƯ\left(3\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;3\right\}\)
3: Để 4/x là số tự nhiên là \(\left\{{}\begin{matrix}\dfrac{4}{x}>0\\x\inƯ\left(4\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2;4\right\}\)
4: Để 5/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{5}{x}>0\\x\inƯ\left(5\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;5\right\}\)
5: Để 6/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{6}{x}>0\\x\inƯ\left(6\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2;3;6\right\}\)
6: Để 9/x+1 là số tự nhiên thì \(\left\{{}\begin{matrix}x+1>0\\x+1\inƯ\left(9\right)\end{matrix}\right.\Leftrightarrow x+1\in\left\{1;3;9\right\}\)
=>\(x\in\left\{0;2;8\right\}\)
7: Để 8/x+1 là số tự nhiên thì
\(\left\{{}\begin{matrix}x+1\inƯ\left(8\right)\\x+1>0\end{matrix}\right.\)
=>x+1 thuộc {1;2;4;8}
=>x thuộc {0;1;3;7}
8: Để 7/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(7)
=>x+1 thuộc {1;7}
=>x thuộc {0;6}
9: Để 6/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(6)
=>x+1 thuộc {1;2;3;6}
=>x thuộc {0;1;2;5}
10: Để 5/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(5)
=>x+1 thuộc {1;5}
=>x thuộc {0;4}