1/chững minh rằng
1/5^2+1/6^2+1/7^2+.......+1/2007^2<1/4
2/tìm số tự nhiên n để phân số A=8n+193/4n+3
a,có giá trị là số tự nhiên
b,là phân số tối giản
c,với giá trị nào của n trong khoảng từ 150 đến 170 thì phân số A rút gọn được
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+....+\frac{1}{2007^2}\)\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{2006.2007}\)
\(=\frac{5-4}{4.5}+\frac{6-5}{6.5}+....+\frac{2007-2006}{2006.2007}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{2006}-\frac{1}{2007}\)
\(=\frac{1}{4}-\frac{1}{2007}\)
\(\Leftrightarrow A< \frac{1}{4}-\frac{1}{2007}< \frac{1}{4}\)
vậy đpcm
Đặt \(B=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\)
Ta thấy:
\(B=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)
\(\Rightarrow B< \dfrac{1}{4}\)
Ta lại thấy:
\(B>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\)
\(\Rightarrow B>6\)
\(\Rightarrow\dfrac{1}{6}< B< \dfrac{1}{4}\left(dpcm\right)\)
Hello Cúp Bơ Quang, ta là Phát đây. Mi bí bài đó hả, ta cũng chẳng biết.
có thể tham khảo phương pháp giải ở đây https://hoc24.vn/hoi-dap/question/205816.html
a) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{2006\cdot2007}\)
=> \(<\frac{1}{4}-\frac{1}{2007}<\frac{1}{4}\)
\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}<\frac{1}{4}\)
b) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{2007\cdot2008}\)
=> \(>\frac{1}{5}-\frac{1}{2008}>\frac{1}{5}\)
\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)