\(Cho\)\(A=\frac{2n+5}{n-1}\)\(\left(n\ne1,n\inℕ^∗\right)\)
Tìm n để A là Số Nguyên Tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Cho \(A=\frac{n\left(n+1\right)}{2}\)và \(B=2n+1\left(n\inℕ^∗\right)\). TÌM ƯCLN ( A , B ) ?
Gọi UCLN (A;B) là : d
=> \(A⋮d\)
\(\Rightarrow\frac{n^2}{2}+\frac{n}{2}⋮d\)
\(\Rightarrow\frac{4}{n}\left(\frac{n^2}{2}+\frac{n}{2}\right)⋮d\)
\(\Rightarrow2n+2⋮d\)
\(\Rightarrow2n+2-2n-1⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vậy...............
\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)
\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)
\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)
\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)
\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)
can
\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)
n=(0,1,2)
du
n=2
ds: n=2
Ta có
2n+5 chia hết cho n-1
Tách 2n+5=2n-1+6
Vì 2n-1 đã chia hết cho n-1 nên 6 phải chia hết cho n-1
Suy ra n-1 thuộc ước của 6
Mà ước của 6=
là 1;-1;2;-2;3;-3;6;-6.
Rồi sau đo bạn thử n-1 với từng trường hợp
Thấy n nào nguyên tố thì đó là đáp an