Cho d1 : 2x - y - 1 = 0
Tìm m biết khoảng cách d2 ( m ; d1 ) = √5 biết M ( m - 1 ; 2m + 2 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\Rightarrow3=4m.2-m-5\Leftrightarrow m=\dfrac{8}{5}\)
b/
Tọa độ A là \(A\left(x_0;y_0\right)\)
\(\Rightarrow y_0=4mx_0-m-5\forall m\)
\(\Leftrightarrow\left(4x_0-1\right)m-\left(y_0+5\right)=0\forall m\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x_0-1=0\\y_0+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{4}\\y_0=-5\end{matrix}\right.\)
=> d1 luân đi qua điểm A cố định \(A\left(\dfrac{1}{4};-5\right)\forall m\)
Tọa độ B là \(B\left(x_1;y_1\right)\)
\(\Rightarrow y_1=\left(3m^2+1\right)x_1+m^2-4\forall m\)
\(\Leftrightarrow3m^2x_1+x_1+m^2-4-y_1=0\forall m\)
\(\Leftrightarrow\left(3x_1+1\right)m^2+x_1-y_1-4=0\forall m\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x_1+1=0\\x_1-y_1-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{3}\\y_1=-\dfrac{13}{3}\end{matrix}\right.\)
=> d2 luân đi qua điểm B cố định \(B\left(-\dfrac{1}{3};-\dfrac{13}{3}\right)\)
d/ d1//d2 khi
\(\left\{{}\begin{matrix}4m=3m^2+1\\-m-5\ne m^2-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m_1=1\\m_2=\dfrac{1}{3}\end{matrix}\right.\\m^2+m+1\ne0\end{matrix}\right.\)
Ta có \(m^2+m+1>0\forall m\)
\(\Rightarrow\left[{}\begin{matrix}m_1=1\\m_2=\dfrac{1}{3}\end{matrix}\right.\)
e/
\(\Rightarrow4mx-\left(m+5\right)=\left(3m^2+1\right)x+m^2-4\) tìm m để phương trình có nghiệm
Tìm giao
\(\Rightarrow4mx-\left(m+5\right)=\left(3m^2+1\right)x+m^2-4\) khi m=2
Thay m=2 tìm x rồi thay vào d1 hoặc d2 để tìm y
a: Vì M nằm trên d1 nên M(x;-x-2)
Theo đề, ta có: \(\dfrac{\left|x\cdot1-3\cdot\left(-x-2\right)+1\right|}{\sqrt{1^2+\left(-3\right)^2}}=3\)
\(\Leftrightarrow\left|x+3x+6+1\right|=3\sqrt{10}\)
\(\Leftrightarrow\left|4x+7\right|=3\sqrt{10}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt{10}-7}{4}\\x=\dfrac{-3\sqrt{10}-7}{4}\end{matrix}\right.\)
a:
b: Phương trình hoành độ giao điểm là:
-2x+1=x-5
=>-2x-x=-5-1
=>-3x=-6
=>x=2
Thay x=2 vào y=x-5, ta được:
\(y=2-5=-3\)
Vậy: (d1) cắt (d2) tại A(2;-3)
c: (d1): y=x-5
=>x-y-5=0
Khoảng cách từ O(0;0) đến (d1) là:
\(d\left(O;\left(d1\right)\right)=\dfrac{\left|0\cdot1+0\cdot\left(-1\right)-5\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{5}{\sqrt{2}}\)
(d2): y=-2x+1
=>y+2x-1=0
=>2x+y-1=0
Khoảng cách từ O đến (d2) là:
\(d\left(O;\left(d2\right)\right)=\dfrac{\left|0\cdot2+0\cdot1-1\right|}{\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{5}}\)
M thuộc (d1) nên M(1-2t;1+t)
Theo đề, ta có: d(M;d2)=d(M;d3)
=>\(\dfrac{\left|\left(1-2t\right)\cdot3+\left(1+t\right)\cdot4-4\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|\left(1-2t\right)\cdot4+\left(1+t\right)\cdot\left(-3\right)+2\right|}{\sqrt{4^2+\left(-3\right)^2}}\)
=>|-6t+3+4t+4-4|=|4-8t-3t-3+2|
=>|-2t+3|=|-11t+3|
=>-2t+3=-11t+3 hoặc -2t+3=11t-3
=>t=0 hoặc t=6/13
=>M(1;1); M(1/13; 19/13)
a) Để (d1)//(d2) thì
\(\left\{{}\begin{matrix}2m=1\\-m^2+4\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\-m^2\ne-2\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{2}\)
Lời giải:
Theo công thức khoảng cách giữa điểm và đường thẳng:
\(d(M,(d_1))=\frac{|2x_M-y_M-1|}{\sqrt{2^2+1^2}}=\frac{|2(m-1)-(2m+2)-1|}{\sqrt{5}}=\sqrt{5}\)
\(\Leftrightarrow \frac{|-5|}{\sqrt{5}}=\sqrt{5}\Leftrightarrow \sqrt{5}=\sqrt{5}\) (luôn đúng với mọi $m$)
Vậy $m$ có thể là giá trị thực bất kỳ nào đó.