K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 1 2024

Lời giải:
Giả sử $(b-c,bc)>1$. Khi đó gọi $p$ là ước nguyên tố lớn nhất của $b-c$ và $bc$

Có:

$bc\vdots p\Rightarrow b\vdots p$ hoặc $c\vdots p$
Nếu $b\vdots p$ thì từ $b-c\vdots p\Rightarrow c\vdots p$
Nếu $c\vdots p$ thì từ $b-c\vdots p\Rightarrow b\vdots p$
Vậy $b$ và $c$ đều chia hết cho $p$.

Quay trở lại đkđb: 

$ab+1\vdots c\vdots p$

Mà $ab\vdots p$ (do $b\vdots p$)

$\Rightarrow 1\vdots p\Rightarrow p=1$ (vô lý)

Vậy điều giả sử là sai. Tức là $(b-c,bc)=1$

AH
Akai Haruma
Giáo viên
1 tháng 1 2024

5 tháng 9 2016
bai nay mk lam dc 3 phan b ,c va d
5 tháng 9 2016

mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !

20 tháng 12 2019

Đang định hỏi thì ....

8 tháng 6 2015

a chia hết cho b => a = b.m (m \(\in\) N)

a chia hết cho c => a = c.n (n \(\in\) N)

=> b.m = c.n => m = \(\frac{c.n}{b}\). Vì (c;b) = 1 m là số tự nhiên nên n chia hết cho b

=> n = b.q (q \(\in\) N)

=> a = c.n = c.b.q => a chia hết cho b.c

8 tháng 6 2015

a chia hết cho b => a = bm (m \(\in\) N)

a chia hết cho c => a = cn (n \(\in\) N)

Vậy bm = cn. Do đó n = \(\frac{bm}{c}\)

Mà ƯCLN(b ; c) = 1 và n \(\in\) N nên m chia hết cho c

=> m = ck (k  N)

=> a = bm = bck

                           Vậy a chia hết cho b.c

1 tháng 10 2023

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

1 tháng 10 2023

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3

30 tháng 11 2017

1. Phải là \((a+b+c)^{\color{red}{2}}=3(ab+bc+ac)\) chứ nhỉ?
VD: Với \(a=b=c=1\) thì \((a+b+c)^3=27\ne 3(ab+bc+ac)=9\) !!!

30 tháng 11 2017

Mình chép nhầm đề đáng lẽ là mũ 2 nhưng lại chép thành mũ 3 bạn biết giải giải hộ mình với nhé

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

16 tháng 2 2022

b) ab+ba

Ta có:ab=10a+b

          ba=10b+a

 ab+ba=10a+b+10b+a

           =  11a  + 11b

Ta thấy: 11a⋮11   ;   11b⋮11

=>ab+ba⋮11 (ĐPCM)

a)+)Theo bài ta có:a\(⋮\)c;b\(⋮\)c

\(\Rightarrow am⋮c;bn⋮c\)

\(\Rightarrow am\pm bn⋮c\)(ĐPCM)

Vậy nếu a\(⋮\)c;b\(⋮\)c  \(\Rightarrow am\pm bn⋮c\)

b)+)Theo bài ta có:a\(⋮\)m;b\(⋮\)m;a+b+c\(⋮\)m

\(\Rightarrow\left(a+b\right)+c⋮m\)

Mà a+b\(⋮\)m(vì a\(⋮\)m;b\(⋮\)m)

\(\Rightarrow c⋮m\)(ĐPCM)

Vậy c\(⋮m\) khi a\(⋮\)m;b\(⋮\)m và a+b+c\(⋮\)m

*Lưu ý ĐPCM=Điều phải chứng minh

Chúc bn học tốt

2 tháng 4 2020

thanks bạn