Tam giác ABC có cạnh \(a=2\sqrt{3};b=2;\widehat{C}=30^0\)
a) Tính cạnh c, góc A và diện tích S của tam giác ABC
b) Tính chiều cao \(h_a\) và đường trung tuyến \(m_a\) của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng BC nhận \(\overrightarrow{n}=\left(\sqrt{3};-3\right)\) là 1 vtpt
Gọi \(\overrightarrow{n_1}=\left(a;b\right)\) là 1 vtpt của AB (với a;b không đồng thời bằng 0)
Do tam giác ABC đều \(\Rightarrow\widehat{\left(n_1;\overrightarrow{n}\right)}=60^0\)
\(\Rightarrow cos\left(\overrightarrow{n_1};\overrightarrow{n}\right)=\dfrac{\left|a\sqrt{3}-3b\right|}{\sqrt{a^2+b^2}.\sqrt{3+9}}=\dfrac{1}{2}\)
\(\Leftrightarrow\left(a-\sqrt{3}b\right)^2=a^2+b^2\)
\(\Leftrightarrow a^2+3b^2-2\sqrt{3}ab=a^2+b^2\)
\(\Leftrightarrow b^2=\sqrt{3}ab\Rightarrow\left[{}\begin{matrix}b=0\\b=\sqrt{3}a\end{matrix}\right.\)
\(\Rightarrow\) Phương trình 2 cạnh còn lại có dạng:
\(\left\{{}\begin{matrix}a\left(x-2\right)+0\left(y-0\right)=0\\a\left(x-2\right)+\sqrt{3}a\left(y-0\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+\sqrt{3}y-2=0\end{matrix}\right.\)
Tam giác ABC là tam giác đều?
Nếu ABC đều thì \(\left|\overrightarrow{BM}\right|=BM=\dfrac{a\sqrt{3}}{2}\)
\(tanB=\sqrt{2}\Rightarrow\dfrac{AC}{AB}=\sqrt{2}\Rightarrow\dfrac{AC^2}{AB^2}=2\)
\(\Rightarrow\dfrac{AC^2}{AB^2}+1=3\Rightarrow\dfrac{AC^2+AB^2}{AB^2}=3\Rightarrow\dfrac{BC^2}{AB^2}=3\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{1}{\sqrt{3}}\)
Mà \(sinC=\dfrac{AB}{BC}\Rightarrow sinC=\dfrac{1}{\sqrt{3}}\)
\(sin^2C+cos^2C=1\Rightarrow\dfrac{1}{3}+cos^2C=1\Rightarrow cosC=\dfrac{\sqrt{6}}{3}\)
\(tanC=\dfrac{sinC}{cosC}=\dfrac{\sqrt{2}}{2}\)
b.
Trong tam giác vuông ACH:
\(sinC=\dfrac{AH}{AC}\Rightarrow AC=\dfrac{AH}{sinC}=\dfrac{2\sqrt{3}}{\dfrac{1}{\sqrt{3}}}=6\left(cm\right)\)
Trong tam giác vuông ABC:
\(tanB=\dfrac{AC}{AB}\Rightarrow AB=\dfrac{AC}{tanB}=\dfrac{6}{\sqrt{2}}=3\sqrt{2}\)
Áp dụng Pitago:
\(BC=\sqrt{AB^2+AC^2}=3\sqrt{6}\left(cm\right)\)