K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Các hệ thức lượng giác trong tam giác và giải tam giác

NV
17 tháng 4 2022

Đường thẳng BC nhận \(\overrightarrow{n}=\left(\sqrt{3};-3\right)\) là 1 vtpt

Gọi \(\overrightarrow{n_1}=\left(a;b\right)\) là 1 vtpt của AB (với a;b không đồng thời bằng 0)

Do tam giác ABC đều \(\Rightarrow\widehat{\left(n_1;\overrightarrow{n}\right)}=60^0\)

\(\Rightarrow cos\left(\overrightarrow{n_1};\overrightarrow{n}\right)=\dfrac{\left|a\sqrt{3}-3b\right|}{\sqrt{a^2+b^2}.\sqrt{3+9}}=\dfrac{1}{2}\)

\(\Leftrightarrow\left(a-\sqrt{3}b\right)^2=a^2+b^2\)

\(\Leftrightarrow a^2+3b^2-2\sqrt{3}ab=a^2+b^2\)

\(\Leftrightarrow b^2=\sqrt{3}ab\Rightarrow\left[{}\begin{matrix}b=0\\b=\sqrt{3}a\end{matrix}\right.\)

\(\Rightarrow\) Phương trình 2 cạnh còn lại có dạng:

\(\left\{{}\begin{matrix}a\left(x-2\right)+0\left(y-0\right)=0\\a\left(x-2\right)+\sqrt{3}a\left(y-0\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+\sqrt{3}y-2=0\end{matrix}\right.\)

27 tháng 2 2021

B

27 tháng 2 2021

Đáp án B nha

NV
12 tháng 9 2021

Tam giác ABC là tam giác đều?

Nếu ABC đều thì \(\left|\overrightarrow{BM}\right|=BM=\dfrac{a\sqrt{3}}{2}\)

Chọn C

20 tháng 6 2016

bạn ơi giúp mình với C/M: (ax^2 - bx^2)^4 + (2ab+bx^2)^4 + (2ab+a^2)^4 = 2(a^2+ab+b^2)

NV
15 tháng 12 2020

D là điểm nào bạn?

16 tháng 12 2020

Chắc là GB với GC đấy.

 

NV
25 tháng 8 2021

\(tanB=\sqrt{2}\Rightarrow\dfrac{AC}{AB}=\sqrt{2}\Rightarrow\dfrac{AC^2}{AB^2}=2\)

\(\Rightarrow\dfrac{AC^2}{AB^2}+1=3\Rightarrow\dfrac{AC^2+AB^2}{AB^2}=3\Rightarrow\dfrac{BC^2}{AB^2}=3\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{1}{\sqrt{3}}\)

Mà \(sinC=\dfrac{AB}{BC}\Rightarrow sinC=\dfrac{1}{\sqrt{3}}\)

\(sin^2C+cos^2C=1\Rightarrow\dfrac{1}{3}+cos^2C=1\Rightarrow cosC=\dfrac{\sqrt{6}}{3}\)

\(tanC=\dfrac{sinC}{cosC}=\dfrac{\sqrt{2}}{2}\)

b.

Trong tam giác vuông ACH:

\(sinC=\dfrac{AH}{AC}\Rightarrow AC=\dfrac{AH}{sinC}=\dfrac{2\sqrt{3}}{\dfrac{1}{\sqrt{3}}}=6\left(cm\right)\)

Trong tam giác vuông ABC:

\(tanB=\dfrac{AC}{AB}\Rightarrow AB=\dfrac{AC}{tanB}=\dfrac{6}{\sqrt{2}}=3\sqrt{2}\)

Áp dụng Pitago:

\(BC=\sqrt{AB^2+AC^2}=3\sqrt{6}\left(cm\right)\)

NV
25 tháng 8 2021

undefined