K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 4 2022

Đường thẳng BC nhận \(\overrightarrow{n}=\left(\sqrt{3};-3\right)\) là 1 vtpt

Gọi \(\overrightarrow{n_1}=\left(a;b\right)\) là 1 vtpt của AB (với a;b không đồng thời bằng 0)

Do tam giác ABC đều \(\Rightarrow\widehat{\left(n_1;\overrightarrow{n}\right)}=60^0\)

\(\Rightarrow cos\left(\overrightarrow{n_1};\overrightarrow{n}\right)=\dfrac{\left|a\sqrt{3}-3b\right|}{\sqrt{a^2+b^2}.\sqrt{3+9}}=\dfrac{1}{2}\)

\(\Leftrightarrow\left(a-\sqrt{3}b\right)^2=a^2+b^2\)

\(\Leftrightarrow a^2+3b^2-2\sqrt{3}ab=a^2+b^2\)

\(\Leftrightarrow b^2=\sqrt{3}ab\Rightarrow\left[{}\begin{matrix}b=0\\b=\sqrt{3}a\end{matrix}\right.\)

\(\Rightarrow\) Phương trình 2 cạnh còn lại có dạng:

\(\left\{{}\begin{matrix}a\left(x-2\right)+0\left(y-0\right)=0\\a\left(x-2\right)+\sqrt{3}a\left(y-0\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+\sqrt{3}y-2=0\end{matrix}\right.\)