giai pt sau ;
a)x4 +2x3-2x2+2x-3=0
b)x2+3x+4 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(x^2=t\left(t\ge0\right)\)
Khi đó pt trở thành \(2t^2-5t+6=0\)
=> pt vô nghiệm !
_Kudo_
Đặt t = x2 (t \(\ge\) 0)
Khi đo ta có pt: 2t2 - 5t + 6 = 0
<=> 2(t2 - \(\frac{5}{2}\)t + 3) = 0
<=> 2(t2 - \(\frac{5}{2}\)t + \(\frac{25}{16}\) + \(\frac{23}{16}\)) = 0
<=> 2(t - \(\frac{5}{4}\))2 + \(\frac{23}{8}\) = 0
<=> 2(t - \(\frac{5}{4}\))2 = -\(\frac{23}{8}\)(VN)
Vậy pt vô nghiệm
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)=0\)
\(\Leftrightarrow x^2-3x+\frac{1}{2}=0.\)
\(\Leftrightarrow x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+\frac{1}{2}=0.\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{7}{4}.\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{2}=\frac{\sqrt{7}}{2}\\x-\frac{3}{2}=\frac{-\sqrt{7}}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{7}+3}{2}\\x=\frac{-\sqrt{7}+3}{2}\end{cases}}}\)
Học tốt
\(x^2-4+x+2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
x2-4+x+2
=(x2-22)+x+2)
=(x-2)*(x+2)+(x+2)
=(x+2)*(x-2+1)
=(x+2)*(x-1)
\(x^2-12x-2160=0\)
\(=>x^2-2.x.6+36-2196=0\)
\(=>\left(x-6\right)^2-2196=0\)
\(=>\left(x-6\right)^2=2196\)
\(=>\orbr{\begin{cases}x-6=-2196\\x-6=2196\end{cases}=>\orbr{\begin{cases}x=6-6\sqrt{61}\\x=6+6\sqrt{61}\end{cases}}}\)
Mik thề ko đúng mik sẽ ko bao giờ lên olm nữa
x mũ 2 trừ 12 x bằng 2160
suy ra ta có 2160 chia cho 12 bằng 18
<=> ( 5 - x)2 - (2+2x)2 = 0
<=> (5 - x - 2 - 2x).(5 - x + 2 + 2x) = 0
<=> (3- 3x).(7 + x) = 0
<=> 3- 3x = 0 hoặc 7 + x = 0
+) 3 - 3x = 0 <=> x = 1
+) 7 + x = 0 <=> x = -7
Vậy x = 1 ; x = -7
a) \(x^4+2x^3-2x^2+2x-3=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+x^2-x+3x-3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^3+3x^2+x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+3\right)\left(x^2+1\right)=0\left(1\right)\end{cases}}\)
Giải (1) : \(\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x^2=-1\end{cases}}\)
Mà \(x^2\)>0
\(\Rightarrow\)pt vô nghiệm
Vậy \(x\in\left(-3;1\right)\)
\(\)