Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức thành nhân tử , ta đươc :
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x_1=-2\\x_2=1\end{array}\right.;x^2+x+6=\left(x+\frac{1}{2}\right)^2+5\frac{3}{4}\ne0\forall x.\)
Vậy pt đã cho các nghiệm : \(x_1=-2;x_2=1.\)
a) 2x2-4x-x+2=0
=> 2x(x-2)-(x-2)=0
=> (2x-1)(x-2)=0
=> \(\left[{}\begin{matrix}2x-1=0\\x-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
b) 3x2-12x+5x-20=0
=> 3x(x-4)+5.(x-4)=0
=> (x-4)(3x+5)=0
=> \(\left[{}\begin{matrix}x-4=0\\3x+5=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=4\\x=-\dfrac{5}{3}\end{matrix}\right.\)
c)x3+2x2-x2-2x+2x+4=0
=> x2(x+2)-x(x+2)+2(x+2)=0
=>(x2-x+2)(x+2)=0
=> x=-2( vi x2-x+2>0)
d) x3-x2-4x2+4x+4x-4=0
=> x2(x-1)-4x(x-1)+4(x-1)=0
=>(x-1)(x2-4x+4)=0
=> \(\left[{}\begin{matrix}x-1=0\\x^2-4x+4=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2x2-5x+2=0
⇔2x2-x-4x+2=0
⇔x(2x-1)-2(2x-1)=0
⇔(x-2)(2x-1)=0
⇔\(\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=2\\2x=1\Leftrightarrow x=\dfrac{1}{2}\end{matrix}\right.\)
sậy S=\(\left\{2;\dfrac{1}{2}\right\}\)
x3+x2+4=0
⇔x3+2x2-x2-2x+2x+4=0
⇔(x3+2x2)-(x2+2x)+(2x+4)=0
⇔x2(x+2)-x(x+2)+2(x+2)=0
⇔(x+2)(x2-x+2)=0
⇔x+2=0 và x2-x+2=0
⇔x=-2 và \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\)(vô lý)
vậy S={-2}
a) Gần giống cho nó giống luôn.
cần thêm (-x^3+2x^2-x) là giống
\(\left(x-1\right)^4+x^3-2x^2+x=\left(x-1\right)^4+x\left(x^2-2x+1\right)=\left(x-1\right)^4+x\left(x-1\right)^2\)
\(\left(x-1\right)^2\left[\left(x-1\right)^2+x\right]\)
\(\left[\begin{matrix}x-1=0\Rightarrow x=0\\\left(x-1\right)^2+x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\end{matrix}\right.\)
Nghiệm duy nhất: x=1
\(5x^2-23=0\)
\(\Leftrightarrow5x^2=23\)
\(\Leftrightarrow x^2=\frac{23}{5}=4,6\)
\(\Rightarrow\left[\begin{matrix}x=\sqrt{4,6}\\x=-\sqrt{4,6}\end{matrix}\right.\)
\(5x^2-23=0\)
\(\Rightarrow5x^2=23\)
\(\Leftrightarrow x^2=\frac{23}{5}\)
\(\Rightarrow x=\sqrt{4,6}=2,144....\)
a) x4 - 5x2 + 4 = 0 (*)
đặt x2 = m (\(m\ge0\))
(*) <=> m2 - 5m + 4 = 0
m2 - 4m - m + 4 = 0
m(m - 4) - (m - 4) = 0
(m - 4)(m - 1) = 0
vậy m - 4 = 0 hoặc m - 1 = 0
hay m = 4 hoặc m = 1
m = 4 => x2 = 4 => \(x=\pm2\)
m = 1 => x2 = 1 => \(x=\pm1\)
d) \(x\left(x+1\right)\left(x-1\right)\left(x-2\right)=24\)
\(\Leftrightarrow\left[x\left(x-1\right)\right]\left[\left(x+1\right)\left(x-2\right)\right]=24\)
\(\Leftrightarrow\left(x^2-x\right)\left(x^2-x-2\right)-24=0\)
\(\Leftrightarrow\left(x^2-x\right)^2-2\left(x^2-x\right)+1-25=0\)
\(\Leftrightarrow\left(x^2-x+1\right)^2-25=0\)
\(\Leftrightarrow\left(x^2-x+6\right)\left(x^2-x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x+6=0\left(1\right)\\x^2-x-4=0\left(2\right)\end{cases}}\)
+) Pt (1) \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{23}{4}\) ( vô nghiệm )
+) Pt (2) \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{17}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{17}}{4}+\frac{1}{2}\\x=-\frac{\sqrt{17}}{4}+\frac{1}{2}\end{cases}}\) ( thỏa mãn )
Vậy pt đã cho có nghiệm \(S=\left\{\pm\frac{\sqrt{17}}{4}+\frac{1}{2}\right\}\)
đặt \(x^2=t\left(t\ge0\right)\)
Khi đó pt trở thành \(2t^2-5t+6=0\)
=> pt vô nghiệm !
_Kudo_
Đặt t = x2 (t \(\ge\) 0)
Khi đo ta có pt: 2t2 - 5t + 6 = 0
<=> 2(t2 - \(\frac{5}{2}\)t + 3) = 0
<=> 2(t2 - \(\frac{5}{2}\)t + \(\frac{25}{16}\) + \(\frac{23}{16}\)) = 0
<=> 2(t - \(\frac{5}{4}\))2 + \(\frac{23}{8}\) = 0
<=> 2(t - \(\frac{5}{4}\))2 = -\(\frac{23}{8}\)(VN)
Vậy pt vô nghiệm